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Abstract.In this paper, we introduce a new kind of slant helix for null curves called null
Wn−slant helix and we give a definition of new harmonic curvature functions of a null
curve in terms of Wn in (n + 2)−dimensional Lorentzian space Mn+2

1 (for n > 3). Also,
we obtain a characterization such as:

“The curve α is a null Wn − slant helix ⇔ H
′
n − k1Hn−1 − k2Hn−3 = 0”

where Hn, Hn−1 and Hn−3 are harmonic curvature functions and k1, k2 are the Cartan

curvature functions of the null curve α.

1. Introduction

A null curve create many different difficulties because its arc length vanishes.
So, it is impossible to do normalize the tangent vector field in the usual way and
null curves have differences according to spacelike curves and timelike curves.

W. B. Bonnor [17], studied geometry of null curves in Minkowski spacetime and
he proved the fundamental existence and congruence theorems of the null curves in
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Minkowski spacetime. Later, A. Bejancu gave a method for the general situation
of the null curves in Lorentzian manifold. Ferrandez, et. al. [2], studied null curves
in the Lorentz-Minkowski spaces by analysing the Frenet equations associated to
different screen distributions. They found the general frame for the null curves with
reference of Bonnor’s study and called Cartan frame in the Minkowski spacetime.
Moreover, they characterized the null helices in n-dimensional Lorentzian space
form. Çöken and Çiftçi [1], reconstructed the Cartan frame of the null curve for an
arbitrary parameter and characterized pseudo-spherical null curves in Minkowski
spacetime .

In mathematical aspects of relativity theory, a null geodesic is the path that a
massless particle, such as a photon, follows. Physical significance of null curves is
obvious from [15]. They analyzed the motion of classical relativistic string in flat
complex ten-dimensional spacetime and found general solution for the equations of
motion and then they established two parametrization theorems for null curves in
ten dimensions.

Izumiya and Takeuchi [16], introduced the new concept of slant helix in Eu-
clidean 3−space. It was defined by the property that its principal normal vector
field makes a constant angle with a fixed direction. Then Camcı [7], gave some
characterizations of generalized helices and Turgut [6], generalized slant helices in
higher dimensional Euclidean space. Gök, et. al. characterized Vn−slant helices
in Euclidean n−space [12] and Minkowski n−space [13] using harmonic curvature
functions defined by Özdamar and Hacisalihoğlu [8]. In [5], the authors gave some
new characterizations for inclined curves and slant helices in n−dimensional Eu-
clidean space En. Many papers about helices and slant helices have been published
for null and non-null curves in Minkowski space ([2, 3, 4]).

In the present study, we define a new type slant helices called null Wn−slant
helix and we give a characterization Theorem (3.8) for null Wn−slant helix using
its harmonic curvature functions. Also, we previously gave several examples of the
null W−slant helices in E3

1 (see [9]).

2. Preliminaries

In this section, we recall the notion of the null curve in the Lorentzian manifold
[14].

Let be a real (n+2)−dimensional Lorentzian manifold Mn+2
1 = (M, g) is called

Minkowski space defined by a Minkowski metric

g (X,Y ) = −x0y0 +
n+1

lim
i=1

xiyi.

for each X = (x0, x1, ..., xn+1), Y = (y0, y1, ..., yn+1).

Let α : I ⊂ R −→Mn+2
1 be a null curve in M locally given by

αi = αi(t), t ∈ I ⊂ R, i ∈ {1, 2, ..., n+ 2}
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for a coordinate neighbourhood U on α. Then the tangent vector field

dα

dt
= (

dα1

dt
, ...,

dαn+2

dt
)

on U satisfies the condition

g

(
dα

dt
,
dα

dt

)
= 0.

We denote by Tα the tangent bundle of α and Tα⊥ is defined as follows

Tα⊥ =
⋃
Tpα

⊥ , Tpα
⊥ = {vp ∈ TpM ; g (vp, ξp) = 0} ,

where ξp is a null tangent vector field at any p ∈ α. Clearly, Tα⊥ is a vector bundle
over α of rank (n+ 1). Since ξp is a null, it follows that the tangent bundle Tα is
a vector sub bundle of Tα⊥.

Suppose S(Tα⊥) is the complementary vector sub bundle to Tα in Tα⊥.

(2.1) Tα⊥ = Tα ⊥ S(Tα⊥)

where ⊥ means the orthogonal direct sum. It follows that S(Tα⊥) is a non-
degenerate n−dimensional vector sub bundle of the null curve α which is said to be
the screen vector bundle of α. We have

TM |α = S(Tα⊥) ⊥ S(Tα⊥)⊥,

where S(Tα⊥)⊥ is a 2−dimensional complementary orthogonal vector sub bundle
to S(Tα⊥) in TM |α .

Theorem 2.1.([14]) Let α be a null curve of a semi-Riemannian manifold (M, 〈, 〉)
and S(Tα⊥) be a screen vector bundle of α. Then there exists a unique vector bundle
ntr(α) over α of rank 1, such that on each coordinate neighbourhood U ⊂ α there
is a unique N ∈ Γ(ntr(α) |U ) satisfying

〈α′(t), N〉 = 1, 〈N,N〉 = 0, 〈N,X〉 = 0, ∀X ∈ Γ(S(Tα⊥) |U ).

We consider the equality

(2.2) tr(α) = ntr(α) ⊥ S(Tα⊥).

from Eq.(2.1) and Eq.(2.2) then we have the following sum

TM |α = Tα⊕ tr(α) = (Tα⊕ ntr(α)) ⊥ S(Tα⊥).

Theorem 2.2.([14]) Let α : I ⊂ R → Mn+2
1 be a null curve parametrized by the

pseudo-arc s (that is g(α′′(s), α′′(s)) = 1) such that
{
α′, α′′, ..., α(n+2)

}
is a basis of
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TM
∣∣
α(s) for all s and {L,N,W1, ...,Wn} be the Cartan frame along α where L,N

are null vector fields, {Wi}|i=1,..,n are spacelike vector fields. Then there exists only
one Cartan frame satisfying the equations

(2.3)



L′ = α′′ = W1,
N ′ = k1W1 + k2W2,
W ′1 = −k1L−N,

W ′2 = −k2L+ k3W3,
...

W ′i = −kiWi−1 + ki+1Wi+1, i ∈ {3, ..., n− 1}
W ′n = −knWn−1,

where the functions {k1, k2, k3, ..., kn} are called the Cartan curvatures of the null
curve α.

3. Null Wn− Slant Helix and Its Harmonic Curvature Functions

In this section, we give some characterizations for a null Wn−slant helix in
terms of the n th Cartan vector field Wn of the null curve α in Mn+2

1 (for n > 3).

Definition 3.1. Let α : I ⊂ R −→ Mn+2
1 be a null curve in Mn+2

1 and X be a
fixed vector field. If the following equality is provided for all s ∈ I,

g (Wn(s), X) = f(ϕ) , f(ϕ) = constant,

then the curve α is called a null Wn−slant helix in Mn+2
1 where Wn(s) is the last

Cartan vector field of the curve α at its point α(s) and f(ϕ) is a constant function
between the vectors Wn and X.

Definition 3.2. Let α : I ⊂ R −→ Mn+2
1 be a null curve parametrized by the

pseudo arc-lengthed and {L,N,W1, ...,Wn} , {k1(s), k2(s), ..., kn(s)} be the Cartan
frame and Cartan curvature functions of the null curve α, respectively. Harmonic
curvature functions of the null curve α are defined by

Hi : I ⊂ R −→ R

(3.1) Hi =



0 , i = 0
kn
kn−1

, i = 1

− 1

kn−i

{
H
′

i−1 − kn−i+1Hi−2

}
, i = 2, 3, ..., n− 2

H ′n−2 , i = n− 1

−
{
H
′

n−1 + k1Hn−2

}
, i = n.
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Theorem 3.3. Let α : I ⊂ R −→Mn+2
1 be a null Wn−slant helix in Mn+2

1 . There
is the following relationship between the functions Hi and ki

k1 = −
{
H ′n−1 +Hn

}
Hn−2

,

kn−r = −

{
r−1∑
i=1

H2
i

}′
2Hr−1Hr

, r = 2, 3, ..., n− 2.

where Hi and ki denote the Harmonic curvature functions and the Cartan curvature
functions of the curve α, respectively.

Proof. We will prove the relation theorem by induction method.
For r = 2, from Definition (3.2), we have

kn−2 = −H
′
1

H2
.

Using the last equation, we obtain

kn−3 = −{H1H
′
1 +H2H

′
2}

H2H3
.

Now, assume that the theorem is true for r = p and then let us prove that the
theorem is also true for r = p+ 1.

For r = p,

kn−p = −

{
p−1∑
i=1

H2
i

}′
2Hp−1Hp

.

From eq. (3.1), we give

kn−(p+1) = −
{
H ′p − kn−pHp−1

Hp+1

}
.

The curvature function kn−p is placed on the above equation, we obtain

kn−(p+1) = −

{
p∑
i=1

H2
i

}′
2HpHp+1

which completes the proof. 2

Theorem 3.4. Let α : I ⊂ R −→ Mn+2
1 be a null curve with the harmonic cur-

vature functions {H1, H2, ...,Hn} and {H ′1, H ′2, ...,H ′n} be the differentiation with



1008 F. Ates, I. Gok and F. Nejat Ekmekci

respect to s of them. There is the following relationship between the harmonic cur-
vature functions and their derivatives

H ′1
H
′

2

H
′

3

H
′

4
...

H ′n−4
H
′

n−3
H ′n−2
H ′n−1
H ′n


=



0 −kn−2 0 0 . . . 0 0 0 0 0
kn−2 0 −kn−3 0 . . . 0 0 0 0 0

0 kn−3 0 −kn−4 . . . 0 0 0 0 0
0 0 kn−4 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 −k3 0 0 0
0 0 0 0 . . . k3 0 −k2 0 0
0 0 0 0 . . . 0 0 0 1 0
0 0 0 0 . . . 0 0 −k1 0 −1
0 0 0 0 . . . 0 k2 0 k1 0





H1

H2

H3

H4

...
Hn−4
Hn−3
Hn−2
Hn−1
Hn


.

Proof. It is obvious from the eq. (3.1). 2

Theorem 3.5. Let α : I ⊂ R −→Mn+2
1 be a null curve given by the Cartan frame

{L,N,W1, ...,Wn} and harmonic curvature functions {H1, H2, ...,Hn} .
If the curve α is a null Wn−slant helix with its axis X, then we have

(3.2)



g
(
Wn−(i+1), X

)
= Hig (Wn, X) , 0 ≤ i ≤ n− 3

g (W1, X) = Hn−1g (Wn, X) ,

g (L,X) = Hn−2g (Wn, X) ,

g (N,X) = Hng (Wn, X) .

Proof. First, we prove the first equality in the eq. (3.2). Thus, we apply the
induction method for the proof.

Since α is the null Wn−slant helix then we can write

g (Wn(s), X) = f(ϕ) , for ∀s ∈ I .

Differentiating the last equation and using the Cartan formulas, we get

−kng (Wn−1, X) = 0

where kn 6= 0, then

(3.3) g (Wn−1, X) = 0 .

For the case i = 1, differentiating eq.(3.3), we have

−kn−1g (Wn−2, X) + kng (Wn, X) = 0
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and so eq.(3.1) gives us

g (Wn−2, X) = H1g (Wn, X) .

Let us assume that Theorem (3.5) is truth for the case i− 1. So,

(3.4) g (Wn−i, X) = Hi−1g (Wn, X) .

Differentiating eq.(3.4), we have

g
(
W
′

n−i, X
)

= H ′i−1g (Wn, X)

and using the Cartan equations

(3.5) −kn−ig (Wn−i−1, X) + kn−i+1g (Wn−i+1, X) = H ′i−1g (Wn, X) .

Consequently, Theorem (3.5) is truth for the case i− 2, this means that

(3.6) g (Wn−i+1, X) = Hi−2g (Wn, X) .

From equations (3.5) and (3.6), we obtain that

g
(
Wn−(i+1), X

)
= − 1

kn−i

{
H ′i−1 − kn−i+1Hi−2

}
g (Wn, X)

and then eq.(3.1) gives us

g
(
Wn−(i+1), X

)
= Hig (Wn, X) for i = 0, 1, . . . , n− 3.

Now, we show that the equations g (W1, X) = Hn−1g (Wn, X) , g (L,X) =
Hn−2g (Wn, X) and g (N,X) = Hng (Wn, X) .

It is obvius that g (W2, X) = Hn−3g (Wn, X) . Differentiating this equation,we
obtain

g (L,X) = − 1

k2

{
H ′n−3 − k3Hn−4

}
g (Wn, X)

and from Definition (3.2), we get

g (L,X) = Hn−2g (Wn, X) ,

it is obvious that g (W1, X) = Hn−1g (Wn, X). Again differentiating the last
equation, we get

g (N,X) = (−k1Hn−2 −H ′n−1)g (Wn, X)

= Hng (Wn, X) .

2
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Corollary 3.6. Let α be a null Wn−slant helix with Cartan frame {L,N,W1, ...,Wn}
and harmonic curvature functions {H1, H2, ...,Hn} in Mn+2

1 . The axis of the null
Wn−slant helix is given as follows

(3.7) X =

{
HnL+Hn−2N +Hn−1W1 +Hn−3W2+
· · ·+H2Wn−3 +H1Wn−2 +Wn

}
f(ϕ).

Proof. If the null Wn−slant helix α has the axis X in Mn+2
1 , then we can write

X = δL+ ηN +

n∑
i=1

λiWi.

By using the definition of harmonic curvature functions, we get

δ = g (N,X) = Hng (Wn, X) ,

η = g (L,X) = Hn−2g (Wn, X) ,

λ1 = g (W1, X) = Hn−1g (Wn, X) ,

λ2 = g (W2, X) = Hn−3g (Wn, X) ,

...

λn−2 = g (Wn−2, X) = H1g (Wn, X) ,

λn−1 = 0,

λn = g (Wn, X) .

Hence, the eq. (3.7) can be easily seen. 2

Definition 3.7. Let α : I ⊂ R −→ Mn+2
1 be a null curve. The sets

{L,N,W1,W2, ...,Wn} and {H1, H2, ...,Hn} denote the Cartan frame, the harmonic
curvature functions of the curve α, respectively. The vector

D = HnL+Hn−2N +Hn−1W1 +Hn−3W2 + ...+H2Wn−3 +H1Wn−2 +Wn

is called the Darboux vector of the null Wn−slant helix α.

Theorem 3.8. (Main Theorem) Let α be a null curve in Mn+2
1 and {H1, H2, ...,Hn}

be harmonic curvature functions of the curve α. Then the following conditions are
equivalent

(1) The curve α is a null Wn−slant helix.

(2) The Darboux vector D is a constant vector field.

(3) H
′

n − k1Hn−1 − k2Hn−3 = 0.

(4) 2Hn−2Hn +H2
n−1 +

n−3∑
i=1

H2
i is a nonzero constant and Hn−2 6= 0.
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Proof. (1) ⇒ (2) : We assume that α is the null Wn−slant helix. From Corollary
(3.6), we have

X =

{
HnL+Hn−2N +Hn−1W1 +Hn−3W2 + ...

+H2Wn−3 +H1Wn−2 +Wn

}
f(ϕ)

= Df(ϕ)

where f(ϕ) is a constant function and X is a fixed direction. Hence, D is a constant
vector field.

(2) ⇒ (3) : Since D is a constant vector field then, D′ = 0. From Definition
(3.7), we get derivative of the Darboux vector D with respect to s

D′ = H ′nL+HnL
′ +H ′n−2N +Hn−2N

′ +H ′n−1W1 +Hn−1W
′
1 + ...

+H ′1Wn−2 +H1W
′
n−2 +W ′n.

By using the Cartan formulas eq. (2.3) and Definition (3.2), we have

H
′

n − k1Hn−1 − k2Hn−3 = 0.

(3)⇒ (4) : We assume that H
′

n − k1Hn−1 − k2Hn−3 = 0.
From eq. (3.1),

Hi = − 1

kn−i

{
H
′

i−1 − kn−i+1Hi−2

}
, i ∈ {2, 3, ..., n− 2} .

From the last equality, we can write

−kn−iHi = H
′

i−1 − kn−i+1Hi−2 , i ∈ {2, 3, ..., n− 2}

where if we take i+ 1 instead of i, we obtain

(3.8) H
′

i = kn−iHi−1 − kn−i−1Hi+1 , i ∈ {1, 2, ..., n− 3} .

In eq. (3.8), we product with Hi

(3.9) HiH
′

i = kn−iHi−1Hi − kn−i−1HiHi+1 , i ∈ {1, 2, ..., n− 3} .

So, we can write

for i = 1, H1H
′
1 = −kn−2H1H2 ,

for i = 2, H2H
′

2 = kn−2H1H2 − kn−3H2H3 ,

for i = 3, H3H
′

3 = kn−3H2H3 − kn−4H3H4 ,

...

for i = n− 6, Hn−6H
′

n−6 = k6Hn−7Hn−6 − k5Hn−6Hn−5 ,

for i = n− 5, Hn−5H
′

n−5 = k5Hn−6Hn−5 − k4Hn−5Hn−4 ,

for i = n− 4, Hn−4H
′

n−4 = k4Hn−5Hn−4 − k3Hn−4Hn−3 ,

for i = n− 3, Hn−3H
′

n−3 = k3Hn−4Hn−3 − k2Hn−3Hn−2 ,
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and we have H
′

n−2 = Hn−1, H
′
n−1 = −Hn − k1Hn−2.

So, we show that by using an algebric calculus

H1H
′
1 +H2H

′
2 + ...+Hn−4H

′
n−4 +Hn−3H

′
n−3+

Hn−1H
′
n−1 +HnH

′
n−2 +Hn−2H

′
n = 0.

Consequently, the expression 2Hn−2Hn +H2
n−1 +

n−3∑
i=1

H2
i is a nonzero constant.

(4) ⇒ (1) : Let 2Hn−2Hn + H2
n−1 +

n−3∑
i=1

H2
i be a nonzero constant.We obtain

that
HnH

′
n−2 +Hn−2H

′
n +Hn−1H

′
n−1 +H1H

′
1+

H2H
′
2 + ...+Hn−4H

′
n−4 +Hn−3H

′
n−3 = 0.

From eq. (3.1), we have
HnHn−1 +Hn−2H

′
n +Hn−1 {−Hn − k1Hn−2}+H1 {−kn−2H2}

+H2 {−kn−3H3 + kn−2H1}+H3 {−kn−4H4 + kn−3H2}+

+ . . .+Hn−4 {−k3Hn−3 − k4Hn−5}+Hn−3 {−k2Hn−2 + k3Hn−4} = 0.
So, an algebric calculus show that

Hn−2

{
H
′

n − k1Hn−1 − k2Hn−3

}
= 0

and since Hn−2 6= 0, we obtain

H
′

n − k1Hn−1 − k2Hn−3 = 0.

From Definition (3.7),

D = HnL+Hn−2N +Hn−1W1 +Hn−3W2 + ...+H2Wn−3 +H1Wn−2 +Wn.

And, differentiating of the Darboux vector field D, we obtain

D′(s) =
{
H
′

n − k1Hn−1 − k2Hn−3

}
L(s) = 0.

Consequently, D is the constant vector field. From Corollary (3.6), we have

X(s) = D(s)f(ϕ)

Since X and D are the constant vector fields for all s, then f(ϕ) is the constant
function. Thus, the curve α is the null Wn−slant helix. 2

Remark 3.9. Considering the above theorem we can easily obtain following corol-
lary.
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Corollary 3.10. The curve α is the null Wn−slant helix with the harmonic curva-
ture functions {H1, H2, ...,Hn} in Mn+2

1 . Then we have the following classification
for the Darboux vector field D

(i) D is spacelike vector field if the Hn−2Hn is a positive,
(ii) D is timelike vector field if the Hn−2Hn < 0 and unequality |Hn−2Hn| >

H2
n−1 +

n−3∑
i=1

H2
i is satisfied,

(iii) D is lightlike vector field if the Hn−2Hn < 0 and equality |Hn−2Hn| =

H2
n−1 +

n−3∑
i=1

H2
i is satisfied.

Proof.Let α be a null Wn−slant helix in Mn+2
1 . So, we can calculate from Definition

(3.7),

g (D,D) = 2Hn−2Hn +H2
n−1 +

n−3∑
i=1

H2
i .

Having obtained the following conditions are satisfied

Hn−2Hn < 0 and |Hn−2Hn| = H2
n−1 +

n−3∑
i=1

H2
i ,

Hn−2Hn ≥ 0,

Hn−2Hn < 0 and |Hn−2Hn| > H2
n−1 +

n−3∑
i=1

H2
i ,

then we say that D is a lightlike, spacelike and timelike vector, respectively. As a
result, we can see that the causal character of the Darboux vector field depends on
the harmonic curvature functions of the curve α. 2

In [11], defined a generalized helix in n−dimensional space (n odd) as a curve

satisfying that the ratios
k2
k1
,
k4
k3
, ... are constants. It is also proven that a curve is a

generalized helix if and only if there exists a fixed direction which makes constant
angle with all the vectors of the Frenet frame. Clearly, ccr−curves are a subset
of generalized helices in the sense of [10]. Via similar idea, if we can consider null

ccr−curves which has constant curvature ratios
ki+1

ki
, where ki are Cartan curvature

functions of the null curve α.

Theorem 3.11. Let α : I ⊂ R −→ M2m+2
1 be a null ccr−curve in M2m+2

1 given
by the Cartan frame {L,N,W1, ...,W2m} and the harmonic curvature functions
{H1, H2, ...,H2m} . The Harmonic curvature functions of the curve α are given by
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

H2i−1 =
i∏

k=1

k2m+1−(2k−1)

k2m+1−2k
, 1 ≤ i ≤ m− 1,

H2m−1 = 0 ,

H2i = 0 , 1 ≤ i ≤ m.

Proof. We apply the induction method for the proof.
For the case of i = 1 :
From eq. (3.1), we can write

H2 = − 1

k2m−2
{H ′1 − k2m−1H0}

= − 1

k2m−2

(
k2m
k2m−1

)′
.

Since the curve α is a ccr−curve then
k2m
k2m−1

is a constant. So, the Harmonic

curvature function H2 is a vanish. Then, eq. (3.1) gives

H3 =
k2m
k2m−1

k2m−2
k2m−3

.

Let us assume that Theorem (3.11) is true for the case i = p then, we have

H2p = 0

and

H2p−1 =
k2m
k2m−1

k2m−2
k2m−3

k2m−4
k2m−5

· · ·
k2m−(2p−4)

k2m−(2p−3)

k2m−(2p−2)

k2m−(2p−1)
.

From Definition (3.2), we obtain

H2p+1 = − 1

k2m−2p−1

{
H ′2p − k2m−2pH2p−1

}
.

Then the last equation reduce to

H2p+1 =
k2m
k2m−1

k2m−2
k2m−3

k2m−4
k2m−5

· · ·
k2m−(2p−2)

k2m−(2p−1)

k2m−2p
k2m−(2p+1)

.

Also, from eq. (3.1) we obtain

H2m−1 = H ′2m−2

= 0.

2
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Corollary 3.12. Let α : I ⊂ R −→ M2m+2
1 be a null W2m−slant helix in

M2m+2
1 . If the ratios

k4
k3
,
k6
k5
, ...,

k2m−2
k2m−3

,
k2m
k2m−1

are constants, then the axis of a

null W2m−slant helix α is

D = H2m−3W2 +H2m−5W4 + ...+H1W2m−2 +W2m.

Proof. According to Definition (3.7) for n = 2m, we have

D = HnL+Hn−2N +Hn−1W1 +Hn−3W2 + ...+H2Wn−3 +H1Wn−2 +Wn

and from Theorem (3.11), we get

D = H2m−3W2 +H2m−5W4 + ...+H1W2m−2 +W2m.

2
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