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Abstract. In this paper we give some non-existence theorems for parallel normal Jacobi

operator of real hypersurfaces in real, complex and quaternionic space forms, respectively.

1. Introduction

It is known that there do not exist real hypersurfaces with parallel curvature
tensor in quaternionic projective spaces. Motivated by this result, Pérez and Suh
([11]) gave a classification of real hypersurfaces in quaternionic projective spaces
whose curvature tensor is parallel in the direction of certain 3-dimensional distri-
bution

Let (M̃, g̃) be a Riemannian manifold. The Jacobi operator R̃X for any tangent
vector field X at x ∈ M̃ defined by

(R̃XY )(x) = (R̃(Y,X)X)(x)

for any Y ∈ TxM̃ , becomes a self adjoint endomorphism of the tangent bundle
TM̃ of M̃ , where R̃ denotes a Riemannian curvature tensor of (M̃, g̃). That is,
the Jacobi operator satisfies R̃X ∈ End(TxM̃) and is symmetric in the sense of
g̃(R̃XY, Z) = g̃(R̃XZ, Y ) for any vector fields Y and Z on M̃ .

Related the Riemannian curvature tensor R̄ defined on Kaehler manifold M̄ ,
let us consider the following notion, namely, normal Jacobi operator.

Let M be a real hypersurface in Kaehler manifold M̄ . It means that there
exists only one unit normal vector to M ⊂ M̄ , which is denoted by N ∈ TxM̄ ,
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x ∈ M̄ . For this normal vector and the Riemannian curvature tensor R̄ of M̄ ,
we obtain R̄N ∈ End(TxM̄). The Jacobi operator R̄ is said to be a nomal Jacobl
operator.Since the tangent vector space TxM at x ∈ M is a subset of TxM̄ at
x ∈M ⊂ M̄ , let us consider the normal Jacobi operator R̄N restrict to TxM , that
is, R̄NX = R̄(X,N)N for any tangent vector field X on M .

Actually, related to the commuting problem with the shape operator for real
hypersurfaces M in quaternionic projective space HPm or in quaternionic hyper-
bolic space HHm, Berndt ([1]) has introduced the notion of normal Jacobi oper-
ator R̄N ∈ End(TxM), x ∈ M , where R̄ denotes the Riemannian curvature ten-
sor of the ambient spaces HPm or HHm, respectively. He ([1]) also has shown
that the curvature adaptedness, that is, the normal Jacobi operator commutes
with the shape operator A, is equivalent to the fact that the distributions D
and D⊥ = Span{ξ1, ξ2, ξ3} are invariant by the shape operator A of M , where
TxM = D⊕D⊥, x ∈ M . Moreover he gave a complete classification of curvature
adapted real hypersurfaces in a quaternionic projective space HPm and a quater-
nionic hyperbolic space HHm, respectively.

We say that the normal Jacobi operator R̄N∈End(TxM) is parallel on M if the
covariant derivative is of the normal Jacobi operator R̄N identically vanishes, that
is, ∇XR̄N = 0 for any tangent vector field X on M . It means that the eigenspaces
of the normal Jacobi operator are parallel along any curve γ in M . Here the
eigenspaces of the normal Jacobi operator R̄N are said to be parallel along any
curve γ if they are invariant with respect to any parallel displacement along γ.

Related to this notion, there are some results for normal Jacobi operator R̄N
defined on real hypersurfaces in complex two-plane Grassmannians G2(Cm+2). It
is known that G2(Cm+2) which consists of all complex two dimensional linear sub-
spaces in Cm+2 becomes the unique compact irreducible Riemannian symmetric
space equipped with both a Kähler structure J and a quaternionic Kähler structure
J (see Berndt and Suh [2]). In [4], Jeong, Kim and Suh have proved a non-existence
theorem for Hopf hypersurfaces in complex two-plane Grassmannians G2(Cm+2),
m ≥ 3, with parallel normal Jacobi operator as follows:

Theorem A. There does not exist any connected Hopf hypersurface in G2(Cm+2),
m ≥ 3, with parallel normal Jacobi operator.

Moreover, as the weaker condition for parallel normal Jacobi operator some
geometer studied various notion, namely, D-parallel, F-parallel, Codazzi type, semi-
parallel and so on ([3], [5], [7], [8] and [10]).

Related to such a parallelism of the normal Jacobi operator, in subsection 2.2
we prove a non-existence theorem for real hypersurfaces in non-flat complex space
forms as follows:

Theorem 1.1. There does not exist any real hypersurface in non-flat complex space
forms with parallel normal Jacobi operator.

We will give a complete proof of Theorem 1.1 in subsection 2.2.
Moreover, we consider real hypersurfaces in non-flat quaternionic space forms

with parallel normal Jacobi operator in subsection 2.3. Therefore, we assert the
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following:

Theorem 1.2. There does not exist any real hypersurface in a quaternionic pro-
jective space HPm, m ≥ 2, with parallel normal Jacobi operator.

Theorem 1.3. There does not exist any real hypersurface in a quaternionic hy-
perbolic space HHm, m ≥ 2, with parallel normal Jacobi operator and constant
principal curvatures.

In subsection 2.3 we will also give a complete proof of Theorem 1.2 and 1.3.

2. Parallelism of Normal Jacobi Operator for Real Hypersurfaces in
Space Forms

In this section we want to derive the parallel normal Jacobi operator from
the curvature tensor R̄(X,Y )Z of real, complex and quaternionic space forms,
respectively.

2.1 Parallelism of Normal Jacobi Operator for Real Hypersurfaces in
Real Space Forms

In this subsection we consider the notion of parallel normal Jacobi operator for
real hypersurfaces in real space forms.

The Riemannian curvature tensor R̄ of a real space form RMm(c) with constant
sectional curvature c is of the form

R̄(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }

for any vector fields X, Y and Z on RMm(c). Then we consider a real hypersurface
M in real space form with parallel normal Jacobi operator R̄N , that is, ∇XR̄N = 0
for any vector field X on M . Then first of all, the normal Jacobi operator R̄N is
defined by

R̄N (X) = R̄(X,N)N = cX.

Now let us consider a covariant derivative of the normal Jacobi operator R̄N
along the direction X. Then it is given by

(∇XR̄N )Y = ∇X(R̄NY )− R̄N∇XY
= (Xc)Y = 0.

Remark. The normal Jacobi operator for every hypersurfaces in real space forms
satisfy parallel normal Jacobi operator.

2.2 Parallelism of Normal Jacobi Operator for Real Hypersurfaces in
Complex Space Forms

Let M be a real hypresurface in a complex m-dimensional complex space form
CMm(c), c 6= 0, m ≥ 3, and let N be a unit normal vector field on a neighborhood
of a point p in M . Let us denote by J the almost complex structure of CMm(c). For
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any local vector field X on a neighborhood of a point p in M , the transformation
of X and N under J can be given by

JX = φX + η(X)N, JN = −ξ,

where φ defines a skew-symmetric transformation on the tangent bundle TM of M ,
while η and ξ denote a 1-form and a tangent vector field on a neighborhood of a
point p in M , respectively. The set of tensors (φ, ξ, η, g) is called an almost contact
metric structure on M . They satisfy the following

φ2 = −I + η ⊗ ξ, φξ = 0, η(φX) = 0, η(ξ) = 1,

where I denotes the identity transformation. Moreover, the Reeb vector field ξ
is said to be Hopf if it is invariant by the shape operator A. The 1-dimensional
foliation of M by the integral manifolds of the Reeb vector field ξ is said to be a
Hopf foliation of M . We say that M is a Hopf hypersurface in G2(Cm+2) if and only
if the Hopf foliation of M is totally geodesic. Let ∇ be the Levi-Civita connection
of M . The covariant derivative of the structure vector is given by

∇Xξ = φAX.

Real hypersurfaces with constant holomorphic sectional curvature of complex space
forms CMm(c), c 6= 0, m ≥ 3, have been classified by Kimura in [6] when c > 0,
i.e., in the complex projective space CPm(c), and by Pérez and Ortega [9], and
Sohn and Suh ([12]) when c < 0, i.e., in the complex hyperbolic space CHm(c).
The Riemannian curvature tensor R̄ of complex space form CMm(c) of constant
holomorphic sectional curvature c is given by

R̄(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ}.

(2.2.3)

By putting Y = Z = N in (2.2.3), we write the normal Jacobi operator R̄N ,
which is given by

R̄N (X) = R̄(X,N)N

=
c

4
{X + 3η(X)ξ}.

Now let us consider a covariant derivative of the normal Jacobi operator R̄N
along the direction X. Then it is given by

(∇XR̄N )Y = ∇X(R̄NY )− R̄N∇XY

=
3c

4
{g(φAX, Y )ξ + η(Y )φAX}.

Let us consider a real hypersurface M in complex space forms CMm(c), c 6= 0,
m ≥ 2, with parallel normal Jacobi operator R̄N , that is, (∇XR̄N )Y = 0 for any
vector fields X and Y on M . Then it is given by

(2.2.4) g(φAX, Y )ξ + η(Y )φAX = 0.
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Lemma 2.1. Let M be a real hypersurface in complex space forms CMm(c), c 6= 0,
m ≥ 3, with parallel normal Jacobi operator. Then the Reeb vector ξ becomes a Hopf
vector.

proof. By putting X = Y = ξ into (2.2.4), we obtain φAξ = 0. From this, if we
apply the structure tensor φ, we have

0 = φ2Aξ = −Aξ + η(Aξ)ξ.

We obtain Aξ = η(Aξ)ξ. This means that a real hypersurface M satisfying parallel
normal Jacobi operator becomes a Hopf hypersurface. 2

From (2.2.4), if we apply the structure tensor φ, we have

0 = η(Y )φ2AX = η(Y )(−AX + η(AX)ξ).

From this, by putting Y = ξ, we have

0 = η(ξ)(−AX + η(AX)ξ)

= −AX + η(AX)ξ.

We obtain AX = η(AX)ξ. And by using the result of Lemma 2.1, that is, Aξ = αξ,
where α = η(Aξ) = g(Aξ, ξ), we have AX = αη(X)ξ. And if X = ξ, then AX = αξ
and if X ⊥ ξ, then AX = 0. This means that the rank of A is less than 2.

On the other hand, in order to prove Theorem 1 in the introduction we introduce
the following result ([13]):

Let M be a real hypersurface of CMm(c), c 6= 0, m ≥ 3, which satisfies t(p) ≤ 2
for all p ∈M . Then M is ruled.

Here, if p is a point of M , the rank of A at p is called the type number of M at
p, and it will be denoted by t(p). Thus by using the above theorem we know that
M is ruled. This means that the structure vector ξ can not become an eigenvector
(see also [13]). But by the result of Lemma 2.1, it makes a contradiction. This
gives a complete proof of Theorem 1.1 in the introduction.

2.3 Parallelism of Normal Jacobi Operator for Real Hypersurfaces in
Quaternionic Space Forms

In this subsection, we want to investigate real hypersurfaces in non-flat quater-
nionic space forms with parallel normal Jacobi operator. Let N be a unit local nor-
mal vector field on a real hypersurface M of quaternionic space form and ξν = JνN ,
ν = 1, 2, 3, be the structure vector fields on M , where {Jν}ν=1,2,3 is a canonical
local basis of the quaternionic Kähler structure J of quaternionic space form. The
vector field JνX can be decomposed as JνX = φνX + ην(X)N for any tangent
vector X of M in quaternionic space form.

Now let us define a distribution D by D(x) = {X ∈ TxM : X ⊥ ξν(x), ν =
1, 2, 3}, x ∈ M, of a real hypersurface M in quaternionic space forms, which is
orthogonal to the structure vector fields ξ1, ξ2, ξ3 and is invariant with respect
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to the structure tensors φ1, φ2, φ3 and by D⊥ = Span{ξ1, ξ2, ξ3} its orthogonal
complement in TM . A canonical local basis {Jν}ν=1,2,3 of quaternionic Kähler
structure J consists of three local almost Hermitian structures Jν in J such that
JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν is taken modulo 3. Since J is parallel
with respect to the Riemannian connection ∇̄ of quaternionic space forms for a
canonical local basis {Jν}ν=1,2,3 of J there exist three one-forms {qν}ν=1,2,3 such
that ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2 for all vector fields X on quaternionic
space form. The quaternionic Kähler structure J induces an almost contact 3-
structure (φν , ξν , ην , g), ν = 1, 2, 3 on M . Also, the following identities can be
proved in a straightforward method.

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,

φξν = φνξ, ην(φX) = η(φνX),

φνφν+1X = φν+2X + ην+1(X)ξν ,

φν+1φνX = −φν+2X + ην(X)ξν+1.

The tensors (φν , ξν , ην , g) satisfy the following

φν
2X = −X + ην(X)ξν , φνξν = 0

ην(φνX) = 0, ην(ξν) = 1.

Now we want to derive the parallel normal Jacobi operator from the curvature
tensor R̄(X,Y )Z of non-flat quaternionic space forms.

A quaternionic space form with constant quaternionic sectional curvature c ∈ R
is a connected quaternionic Kähler manifold M̄ with the property that the Rieman-
nian sectional curvature is equal to c for all tangent 2-planes span {X,JX} with
any unit tangent vector X ∈ TpM̄ , J ∈ Jp, p ∈ M̄ . The standard models of
quaternionic space forms are the quaternionic projective space HPm(c) (c > 0),
the quaternionic space Hm (c = 0) and the quaternionic hyperbolic space HHm(c)
(c < 0). The Riemannian curvature tensor R̄ of a quaternionic space form HMm(c)
with constant quaternionic sectional curvature c is of the form

R̄(X,Y )Z =
c

4

[
g(Y, Z)X − g(X,Z)Y

+

3∑
ν=1

{g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ}
]

for every canonical local basis {J1, J2, J3} of a quaternionic Kähler structure J.
Then first of all, we obtain the normal Jacobi operator R̄N from the curvature
tensor R̄(X,Y )Z of non-flat quaternionic space forms HMm(c), which is given by

R̄N (X) = R̄(X,N)N

=
c

4
{X + 3

3∑
i=1

ηi(X)ξi}.
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Now let us consider a real hypersurface M in non-flat quaternionic space forms
HMm(c) with parallel normal Jacobi operator R̄N , that is, ∇XR̄N = 0 for any
vector field X on M . Then it is given by

(∇XR̄N )Y =
3c

4

{
3∑
i=1

g(qi+2(X)ξi+1 − qi+1(X)ξi+2 + φiAX,Y )ξi

+

3∑
i=1

ηi(Y )(qi+2(X)ξi+1 − qi+1(X)ξi+2 + φiAX)

}
.

(2.3.1)

From (2.3.1) we know that a real hypersurface M in non-flat quaternionic space
forms HMm(c) with parallel normal Jacobi operator R̄N satisfies the following

0 =

3∑
i=1

g(qi+2(X)ξi+1 − qi+1(X)ξi+2 + φiAX,Y )ξi

+

3∑
i=1

ηi(Y )(qi+2(X)ξi+1 − qi+1(X)ξi+2 + φiAX)

(2.3.2)

for any vector fields X and Y on M in HMm(c).

Lemma 2.2. Let M be a real hypersurface in non-flat quaternionic space forms
with parallel normal Jacobi operator. Then g(AD,D⊥) = 0.

Proof. By putting Y = ξ1 into (2.3.2), we obtain

(2.3.3) g(AX, ξ3)ξ2 − g(AX, ξ2)ξ3 + φ1AX = 0.

From this, if we apply the structure tensor φ1, we have

0 = g(AX, ξ3)ξ3 + g(AX, ξ2)ξ2 −AX + η1(AX)ξ1.

We obtain AX =
∑3
i=1 g(AX, ξi)ξi. This means that AX ∈ D⊥ for any tangent

vector field X on M . From this, taking an inner product with any Y ∈ D, we have
g(AX,Y ) = 0. So we get g(AX,Y ) = 0 for any vectors X ∈ D⊥ and Y ∈ D, that
is, g(AD,D⊥) = 0. This gives a complete proof of our Lemma. 2

We recall next Theorems due to Berndt ([1]) which will be used in the proof of
our theorems.

Theorem 2.3. Let M be a connected curvature-adapted real hypersurface in HPm,
m ≥ 2. Then M is congruent to an open part of one of the following real hypersur-
faces in HPm :

(A) a tube of some radius r, 0 < r <
π

2
around the canonically (totally geodesic)

embedded quaternionic projective space HP k for some k ∈ {0, 1, · · · ,m− 1 }.

(B) a tube of some radius r, 0 < r <
π

4
around the canonically (totally geodesic)

embedded complex projective space CPm.
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Conversely, each of these model spaces is curvature-adapted in HPm.

Theorem 2.4 Let M be a connected curvature-adapted real hypersurface in HHm,
m ≥ 2, with constant principal curvatures. Then M is congruent to an open part
of one of the following real hypersurfaces in HHm :

(A0) a horosphere in HHm.

(A) a tube of some radius r ∈ R+ around the canonically (totally geodesic) em-
bedded quaternionic hyperbolic space HHk for some k∈{0, 1, · · · ,m− 1}.

(B) a tube of some radius r ∈ R+ around the canonically (totally geodesic)
emheobedded complex hyperbolic space CHm.

Conversely, each of these model spaces is curvature-adapted in HHm and its prin-
cipal curvatures are constant.

Taking Y = ξ1 in (2.3.2) we have

(2.3.4) g(AX, ξ3)ξ2 − g(AX, ξ2)ξ3 + φ1AX = 0.

Now first let us consider for real hypersurfaces in quaternionic projective space
HPm. From Lemma 2.2 and together with Theorem 2.3 we know that any real
hypersurfaces in quaternionic projective space HPm with parallel normal Jacobi
operator are congruent to real hypersurfaces of type (A) or of type (B). So we
check for these cases whether it satisfies the parallel normal Jacobi operator or not,
respectively.

Table 1: The principal curvatures of model spaces and their multiplicities
for a real hypersurface in HPm

(A) (B)

λ1 cot(r) cot(r)
λ2 − tan(r) − tan(r)
α1 2 cot(2r) 2 cot(2r)
α2 - −2 tan(2r)

m(λ1) 4(m− k − 1) 2(m− 1)
m(λ2) 4k 2(m− 1)
m(α1) 3 1
m(α2) - 2

Check I-1. Type (A) : TxM = Tα1 ⊕ Tλ1 ⊕ Tλ2 , x ∈M .

By taking a unit tangent vector X ∈ Tλ1 in (2.3.4), we get 0 = λ1φ1X. And
since λ1 = cot(r), 0 < r < π

2 , we have φ1X = 0. So this makes a contradiction.

Check I-2. Type (B) : TxM = Tα1
⊕ Tα2

⊕ Tλ1
⊕ Tλ2

, x ∈M .
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By using a unit tangent vector X ∈ Tλ1
in (2.3.4), we have 0 = λ1φ1X. For

the reason of λ1 = cot(r), 0 < r < π
4 , we obtain φ1X = 0. Thus this makes a

contradiction.
Thus it can be easily checked that the normal Jacobi operator R̄N for any

hypersurfaces of type (A) or of type (B) in Theorem 2.3 does not satisfy parallelism.
From this, we complete the proof of our Theorem 1.2 in the introduction.

Next, from Lemma 2.2. and together with Theorem 2.4, we know that any
real hypersurfaces in quaternionic hyperbolic space HHm with constant principal
curvatures and parallel normal Jacobi operator are congruent to real hypersurfaces
of types (A0), (A) or of type (B). So we can check for these cases whether it satisfies
the parallel normal Jacobi operator or not, respectively.

Table 2: The principal curvatures of model spaces and their multiplicities
for a real hypersurface in HHm

(A0) (A) (B)

λ1 1 coth(r) coth(r)
λ2 - tanh(r) tanh(r)
α1 2 2 coth(2r) 2 coth(2r)
α2 - - −2 tanh(2r)

m(λ1) 4(m− 1) 4(m− k − 1) 2(m− 1)
m(λ2) - 4k 2(m− 1)
m(α1) 3 3 1
m(α2) - - 2

Check II-1. Type (A0) : TxM = Tα1
⊕ Tλ1

, x ∈M .

By taking a unit tangent vector X ∈ Tλ1 in (2.3.4), we get λ1φ1X = 0. And
since λ1 = 1, we have φ1X = 0. So this makes a contradiction.

Check II-2. Type (A) : TxM = Tα1
⊕ Tλ1

⊕ Tλ2
, x ∈M .

By using a unit tangent vector X ∈ Tλ1 in (2.3.4), we have λ1φ1X = 0. For
the reason of λ1 = coth(r), r ∈ R+, we obtain φ1X = 0. Thus this makes a
contradiction.

Check II-3. Type (B) : TxM = Tα1
⊕ Tα2

⊕ Tλ1
⊕ Tλ2

, x ∈M .

By taking a unit tangent vector X ∈ Tλ1 in (2.3.4), we obtain λ1φ1X = 0.
According to λ1 = coth(r), r ∈ R+, we get φ1X = 0. So this causes a contradiction.

Thus it can be easily checked that the normal Jacobi operator R̄N for any hy-
persurfaces of types (A0), (A) or of type (B) in Theorem 2.4 can not be parallel.
From this, we complete the proof of our Theorem 1.3 in the introduction.
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[9] M. Ortega and J. D. Pérez, Real hypersurfaces with constant totally real sectional
curvatures in complex space form, Czechoslovak Math. J., 50(2000), 531–537.

[10] K. Panagiotidou and M. M. Tripathi, Semi-parallelism of normal Jacobi opera-
tor for Hopf hypersurfaces in complex two-plane Grassmannians, Monatsh. Math.,
172(2)(2013), 167–178.
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