KYUNGPOOK Math. J. 56(2016), 755-761 http://dx.doi.org/10.5666/KMJ.2016.56.3.755 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

On the Invariant of Chen-Kuan for Abelian Varieties

HYUNSUK MOON

Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea e-mail: hsmoon@knu.ac.kr

ABSTRACT. Let A be an abelian variety over a global field K. We show that, in "many" cases, Chen-Kuan's invariant M(A[n]), that is the average number of n-torsion points of A over various residue fields of K, has the minimal possible value.

1. Introduction

Let K be a global field and G_K its absolute Galois group. Let R be a discrete valuation ring with maximal ideal $\mathfrak{m} = (\pi)$ and finite residue field $k := R/(\pi)$. For a positive integer n, we let V_n be a free R/\mathfrak{m}^n -module of finite rank $d \ge 1$. Set $U_{n,i} = \pi^i V_n \smallsetminus \pi^{i+1} V_n$ for each $0 \le i \le n-1$. Consider a continuous Galois representation $\rho_n : G_K \to \operatorname{GL}(V_n)$ unramified outside a finite set S of places of K, where $\operatorname{GL}(V_n)$ denotes the group of all automorphisms of V_n as an R/\mathfrak{m}^n -module. For $\mathfrak{p} \notin S$, we let $N_{\mathfrak{p}}$ be the number of fixed points of the action of the Frobenius conjugacy class $\operatorname{Frob}_{\mathfrak{p}} \subset G_K$ on V_n by ρ_n . We consider the average number of $N_{\mathfrak{p}}$ when \mathfrak{p} runs through the non-archimedean places in K, that is

$$M(\rho_n) = \lim_{x \to \infty} \frac{1}{\pi_K(x)} \sum_{\kappa(\mathfrak{p}) \le x, \ \mathfrak{p} \not\in S} N_{\mathfrak{p}}$$

where $\kappa(\mathfrak{p})$ is the number of elements of the residue field of \mathfrak{p} and $\pi_K(x)$ is the number of places of K with $\kappa(\mathfrak{p}) \leq x$.

It is known that the limit $M(\rho_n)$ exists and it is equal to the number of orbits of G_K in V_n ([4], cf. [1], [3]). In general, $M(\rho_n) \ge n+1$ since each $\pi^i V_n$ is stable under the Galois action and so $U_{n,i}$ for each $0 \le i \le n-1$ is stable. Also, there is a certain relationship between $M(\rho_n)$ and the size of the image of Galois representations. For instance, if ρ_n is surjective, then $M(\rho_n) = n + 1$, because G_K acts transitively on $U_{n,i}$ for each $0 \le i \le n-1$ ([4], Theorem 4). Applying this result to the *n*-torsion subgroup E[n] of an elliptic curve without complex multiplication, we proved that M(E[n]) is equal to the divisor function d(n) for all integers n prime to a certain

Received March 22, 2016; revised May 17, 2016; accepted July 5, 2016.

²⁰¹⁰ Mathematics Subject Classification: primary 11F80; secondary 11G05, 11N45.

Key words and phrases: Galois representations, torsion points, Galois orbits.

Hyunsuk Moon

constant $C_{E/K}$ (which depends on E and K). The aim of this paper is to generalize the above result to the case where ρ_n is not necessarily surjective. For instance, our theorem is applicable if d = 2g and $\operatorname{Im}(\rho_n)$ contains $\operatorname{Sp}_{2g}(R/\pi^n)$, which is the case if ρ_n comes from an abelian variety of a rather general class:

Theorem 1.1. (=Corollary 3.3, §3) Let K be a number field and A an abelian variety defined over K. Suppose that $\operatorname{End}_{\overline{K}}(A) = \mathbb{Z}$ and $\dim(A) = odd$ or 2 or 6. Then there exists an integer $C_{A/K}$ depending on A and K such that for all n prime to $C_{A/K}$, we have

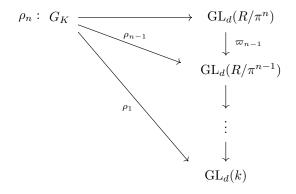
$$M(A[n]) = d(n),$$

where d(n) is the number of positive divisors of n.

2. A Sufficient Condition for the Transitivity

In this section, we find a sufficient condition for the transitivity of the Galois action.

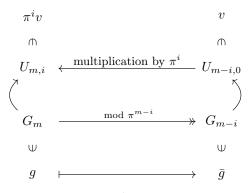
For a continuous representation $\rho_n : G_K \to \operatorname{GL}_d(R/\pi^n)$, we let $G_n := \operatorname{Im}(\rho_n) \subset \operatorname{GL}_d(R/\pi^n)$ and $\varpi_m : \operatorname{GL}_d(R/\pi^{m+1}) \to \operatorname{GL}_d(R/\pi^m)$ a mod π^m reduction map for an integer $1 \leq m < n$.



For each $0 \leq i < m$, the actions of G_m on $U_{m,i} = \pi^i V_m \smallsetminus \pi^{i+1} V_m$ and G_{m-i} on $U_{m-i,0} = V_{m-i} \smallsetminus \pi V_{m-i}$ are compatible in the sense that

$$(*) g(\pi^i v) = \pi^i(\bar{g}v)$$

for all $g \in G_m$ and $v \in V_{m-i}$, where \overline{g} is the mod π^{m-i} reduction of g.



In particular, the action of G_m on $\pi^{m-1}V_m$ and G_1 on V_1 are compatible, so G_m acts on V_1 in the sense of (*).

On the other hand, the kernel of ϖ_{m-1} is $1 + \pi^{m-1} \operatorname{M}_d(R/\pi^m)$ for $m \geq 2$. Since $\pi^{m-1}x$ for $x \in \operatorname{M}_d(R/\pi^m)$ depends only on the class of $x \pmod{\pi}$, we may regard x as an element of $\operatorname{M}_d(R/\pi^m)/\pi \operatorname{M}_d(R/\pi^m) \simeq \operatorname{M}_d(k)$. So, we can identify each element of the kernel with $1 + \pi^{m-1}x$ for some $x \in \operatorname{M}_d(k)$. We put

$$\mathfrak{g}_m := \{ x \in \mathcal{M}_d(k) | 1 + \pi^{m-1} x \in \operatorname{Ker}(\varpi_{m-1}) \cap G_m \}.$$

Since $(1+\pi^{m-1}x)(1+\pi^{m-1}y) \equiv 1+\pi^{m-1}(x+y) \pmod{\pi^m}$, \mathfrak{g}_m is an abelian group under the addition. Via (*), we regard V_1 as \mathfrak{g}_m -module:

$$\mathfrak{g}_m \subset \frac{\mathrm{M}_d(R/\pi^m)}{\pi} / \frac{\pi}{\mathrm{M}_d(R/\pi^m)} \simeq \mathrm{M}_d(R/\pi)$$

$$\begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Lemma 2.1. We assume that

- (1) the action of G_1 on $V_1 \setminus \{0\}$ is transitive, and
- (2) for any $v' \in V_1$ and $v \in V_1 \setminus \{0\}$, there exists an $x \in \mathfrak{g}_m$ for each $2 \leq m \leq n$ satisfying v' = xv.

Then G_n acts on $U_{n,i}$ transitively for each $0 \le i \le n-1$.

Proof. Since the action of G_n on $U_{n,i}$ is compatible with the action of G_{n-i} on $U_{n-i,0}$ in the sense of (*), we show that G_m acts on $U_{m,0}$ transitively for $1 \le m \le n$. Use induction on m. If m = 1, then it is trivial by the assumption (1). Assume

Hyunsuk Moon

that G_{m-1} acts on $U_{m-1,0}$ transitively. Let $v, v' \in U_{m,0} = V_m \smallsetminus \pi V_m$. By the assumption of the induction and using that ϖ_{m-1} is surjective, we have $g_m \in G_m$ such that $v' \equiv g_m v \pmod{\pi^{m-1}}$. So, we may assume $v' \equiv v \pmod{\pi^{m-1}}$. Then $v' - v \in \pi^{m-1}V_m \simeq V_1$ and by the assumption (2), we have $x \in \mathfrak{g}_m$ satisfying $v' - v = x(\pi^{m-1}v)$. Thus $v' = v + x\pi^{m-1}v = (1 + \pi^{m-1}x)v$ for $1 + \pi^{m-1}x \in G_m$. Hence the proof is complete. \Box

3. The Results

Theorem 3.1. If the image of ρ_n contains $SL_d(R/\pi^n)$, then $M(\rho_n) = n + 1$.

Proof. We use the same notation as in §2. Since $M(\rho_n) \ge n+1$, we may assume $G_n = \operatorname{SL}_d(R/\pi^n)$. We apply Lemma 2.1 with $G_n = \operatorname{SL}_d(R/\pi^n)$ by checking the assumptions therein. For assumption (1), it is well-known that the action of SL_d over a field k on $k^{\oplus d} \setminus \{0\}$ is transitive ([2], §4.7). For assumption (2), at first, we determine \mathfrak{g}_m , $2 \le m \le n$. Since $\det(1 + \pi x) \equiv 1 + \operatorname{tr}(x)\pi \pmod{\pi^2}$, if $1 + \pi x \in \operatorname{SL}_d(R/\pi^2)$, we have $\operatorname{tr}(x) \equiv 0 \pmod{\pi}$. So,

$$\mathfrak{g}_2 = \{ x \in \mathcal{M}_d(k) \mid \operatorname{tr}(x) = 0 \}$$

and similarly

$$\mathfrak{g}_m = \{ x \in \mathcal{M}_d(k) \mid 1 + \pi^{m-1} x \in \mathcal{SL}_d(R/\pi^m) \}$$
$$= \{ x \in \mathcal{M}_d(k) \mid \operatorname{tr}(x) = 0 \}.$$

Hence we know that $\mathfrak{g}_2 = \mathfrak{g}_3 = \cdots = \mathfrak{g}_n$.

Now, let $v, v' \in V_1 \setminus \{0\}$. Then we show that there exists an element $x \in \mathfrak{g}_2$ satisfying v' = xv. It is equivalent to showing that there exists an $x_i \in \mathfrak{g}_2$ satisfying $x_iv = e_i$ where $\{e_1, \dots, e_d\}$ is the standard basis for V_1 . We only show the case i = 1. Other cases of i are similar. For a nonzero $v = {}^t(v_1 \cdots v_d) \in V_1$, if $v_1 \neq 0$, then we take $x_1 \in \mathfrak{g}_2$ such that

$$x_{1}v = \begin{pmatrix} v_{1}^{-1} & & & \\ & 0 & & \\ & & \ddots & & \\ & & & 0 & \\ t & & & -v_{1}^{-1} \end{pmatrix} \begin{pmatrix} v_{1} \\ \vdots \\ v_{d} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

where $t = (v_1^{-1})^2 v_d$. If $v_1 = 0$ and $v_i \neq 0$ for some $i \neq 1$, then we take $x_1 \in \mathfrak{g}_2$ such as

$$x_{1}v = \begin{pmatrix} 0 & v_{i}^{-1} & 0 \\ & \ddots & & \\ & & \ddots & \\ & & & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v_{2} \\ \vdots \\ v_{d} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Therefore G_n acts on $U_{n,i}$ transitively for $0 \le i \le n-1$, so the number of orbits is n+1.

Remark 3.2. In general, if $G \subset \operatorname{GL}_d$ is an algebraic group over R and $G_n = G(R/\pi^n)$, then \mathfrak{g}_m coincides for all positive integers $m \geq 2$.

From now on, we assume $d \ge 1$ is an even integer d = 2g. **Theorem 3.3.** If the image of ρ_n contains $\operatorname{Sp}_{2g}(R/\pi^n)$, then $M(\rho_n) = n + 1$.

Proof. We use the same notation as in §2. Since $M(\rho_n) \ge n+1$, we may assume $G_n = \operatorname{Sp}_{2g}(R/\pi^n)$. We apply Lemma 2.1 with $G_n = \operatorname{Sp}_{2g}(R/\pi^n)$ by checking the assumptions therein. For assumption (1), it is well-known that the action of Sp_{2g} over a finite field k on $k^{\oplus 2g} \smallsetminus \{0\}$ is transitive ([2], §8.5). For assumption (2), we determine \mathfrak{g}_m , $2 \le m \le n$. If we let $J = \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix}$, then we have

$${}^{t}(1+\pi x)J(1+\pi x) \equiv J + \pi J x + \pi^{t} x J \pmod{\pi^{2}}.$$

So, if $1 + \pi x \in \operatorname{Sp}_{2q}(R/\pi^2)$, then we have $Jx + {}^txJ \equiv 0 \pmod{\pi}$. Hence,

$$\mathfrak{g}_{2} = \{ x \in \mathcal{M}_{2g}(k) \mid Jx + {}^{t}xJ = 0 \} \\ = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2g}(k) \mid B = {}^{t}B, C = {}^{t}C, {}^{t}A = -D \}.$$

Now, let $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in V_1 \setminus \{0\}$, where v_1, v_2 are column vectors of $k^{\oplus g}$. We show

that there exists an element $x_i = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathfrak{g}_2 \cap \operatorname{GL}_{2g}(k)$ such that $v = x_i \mathbf{e}_i$ for each $1 \leq i \leq 2g$, where $\{\mathbf{e}_1, \cdots, \mathbf{e}_{2g}\}$ (resp. $\{e_1, \cdots, e_g\}$) is the standard basis for V_1 (resp. $k^{\oplus g}$) (so $\mathbf{e}_i = {}^t(e_i \ 0)$ for $1 \leq i \leq g$). This implies $x_i^{-1}v = \mathbf{e}_i$. We only show the case i = 1. Other cases of i are similar. We divide into two cases.

Case 1. v_1 is a nonzero vector: Consider the equation

$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = x \mathbf{e}_1 = \begin{pmatrix} A & B \\ C & -^t A \end{pmatrix} \begin{pmatrix} e_1 \\ 0 \end{pmatrix} = \begin{pmatrix} A e_1 \\ C e_1 \end{pmatrix}.$$

Then we have $Ae_1 = v_1$ and $Ce_1 = v_2$. Since there exists a basis for $k^{\oplus g}$ containing v_1 , we can find an invertible matrix with the first column v_1 , which implies $Ae_1 = v_1$. We take a symmetric matrix C with the first column v_2 and B = 0. Then $x = \begin{pmatrix} A & 0 \\ C & -{}^tA \end{pmatrix}$ is invertible since det $x = \det A \det(-{}^tA) \neq 0$.

Case 2. $v_1 = 0$ and v_2 is a nonzero vector: If we let $v_2 = {}^t(t_1 \ t_2 \ \cdots \ t_g)$, then we take a symmetric matrix

$$C = \begin{pmatrix} t_1 & t_2 & \cdots & t_g \\ t_2 & a_2 & 0 & 0 \\ \vdots & & \ddots & \vdots \\ t_g & 0 & \cdots & a_g \end{pmatrix}$$

with the first column v_2 . In this case, we have

$$\det C = t_1 a_2 \cdots a_g - t_2^2 a_3 \cdots a_g - \cdots - t_q^2 a_2 \cdots a_{g-1}.$$

When $t_i \neq 0$ for some $i \neq 1$, if we let $a_i = 0$, then we have

$$\det C = -t_i^2 a_2 \cdots a_{i-1} a_{i+1} \cdots a_g.$$

When $t_2 = \cdots = t_g = 0$ and $t_1 \neq 0$, then we have

$$\det C = t_1 a_2 \cdots a_g.$$

Thus we can always find an invertible symmetric matrix C for any nonzero v_2 such that $Ce_1 = v_2$. Hence if we take A = 0 and any invertible symmetric matrix B, then $x = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$ is invertible since det $x = (-1)^g \det C \det B \neq 0$. Therefore the proof is complete. \Box

Let A be an abelian variety defined over K of dimension g. We apply Theorem 3.2 to the Galois representations $\rho: G_K \to \operatorname{Aut}(A[n])$ over the n-division points of A. We write M(A[n]) for $M(\rho)$. The following corollary generalizes Corollary 5 of [4].

Corollary 3.4. Let K be a number field and A an abelian variety defined over K of dimension g. Suppose that $\operatorname{End}_{\overline{K}}(A) = \mathbb{Z}$ and $\dim(A) = odd$ or 2 or 6. Then there exists an integer $C_{A/K}$ depending on A and K such that for all n prime to $C_{A/K}$, we have

$$M(A[n]) = d(n),$$

where d(n) is the number of positive divisors of n.

Proof. Let $n = \prod p^{e_p}$ be the prime factorization of n and

$$\rho: G_K \to \operatorname{Aut}(A[n]) \simeq \operatorname{GL}_{2d}(\mathbb{Z}/n\mathbb{Z}) \simeq \prod \operatorname{GL}_{2d}(\mathbb{Z}/p^{e_p}\mathbb{Z})$$

the Galois representation on A[n]. By a theorem of Serre ([5], Théorème 3), there exists an integer $C_{A/K}$ such that the image of *p*-factor ρ_p of ρ is $\operatorname{GSp}_{2g}(\mathbb{Z}/p^{e_p}\mathbb{Z})$ for any prime $p \nmid C_{A/K}$. By Theorem 3.2, we have $M(A[p^{e_p}]) = e_p + 1$ for such *p*. By the multiplicativity of $M(\rho)$ ([4], Cor. 3), we have for all *n* prime to $C_{A/K}$,

$$M(A[n]) = \prod M(A[p^{e_p}])$$
$$= \prod (e_p + 1)$$
$$= d(n).$$

760

References

- Yen-Mei J. Chen and Yen-Liang Kuan, On the distribution of torsion points modulo primes, Bull. Aust. Math. Soc., 86(2012), 339–347.
- [2] P. M. Cohn, Algebra, Second edition Volume 3, John Wiley & Sons, 1991.
- [3] Hsiu-Lien Huang, The average number of torsion points on elliptic curves, J. Number Theory, 135(2014), 374–389.
- [4] H. Moon, On the invariant $M(A_{/K}, n)$ of Chen-Kuan for Galois representations, Proc. Japan Acad., **90**(2014), 98-100.
- [5] J.-P. Serre, *Résumé des cours de 1985–1986*, Annuaire du Collége de France (1986), 95–99.