KYUNGPOOK Math. J. 56(2016), 755-761
http://dx.doi.org/10.5666/KMJ.2016.56.3.755
pISSN 1225-6951 eISSN 0454-8124
© Kyungpook Mathematical Journal

On the Invariant of Chen-Kuan for Abelian Varieties

Hyunsuk Moon
Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea
e-mail: hsmoon@knu.ac.kr

Abstract. Let A be an abelian variety over a global field K. We show that, in "many" cases, Chen-Kuan's invariant $M(A[n])$, that is the average number of n-torsion points of A over various residue fields of K, has the minimal possible value.

1. Introduction

Let K be a global field and G_{K} its absolute Galois group. Let R be a discrete valuation ring with maximal ideal $\mathfrak{m}=(\pi)$ and finite residue field $k:=R /(\pi)$. For a positive integer n, we let V_{n} be a free R / \mathfrak{m}^{n}-module of finite rank $d \geq 1$. Set $U_{n, i}=\pi^{i} V_{n} \backslash \pi^{i+1} V_{n}$ for each $0 \leq i \leq n-1$. Consider a continuous Galois representation $\rho_{n}: G_{K} \rightarrow \operatorname{GL}\left(V_{n}\right)$ unramified outside a finite set S of places of K, where $\mathrm{GL}\left(V_{n}\right)$ denotes the group of all automorphisms of V_{n} as an R / \mathfrak{m}^{n}-module. For $\mathfrak{p} \notin S$, we let $N_{\mathfrak{p}}$ be the number of fixed points of the action of the Frobenius conjugacy class Frob $_{\mathfrak{p}} \subset G_{K}$ on V_{n} by ρ_{n}. We consider the average number of $N_{\mathfrak{p}}$ when \mathfrak{p} runs through the non-archimedean places in K, that is

$$
M\left(\rho_{n}\right)=\lim _{x \rightarrow \infty} \frac{1}{\pi_{K}(x)} \sum_{\kappa(\mathfrak{p}) \leq x, \mathfrak{p} \notin S} N_{\mathfrak{p}}
$$

where $\kappa(\mathfrak{p})$ is the number of elements of the residue field of \mathfrak{p} and $\pi_{K}(x)$ is the number of places of K with $\kappa(\mathfrak{p}) \leq x$.

It is known that the limit $M\left(\rho_{n}\right)$ exists and it is equal to the number of orbits of G_{K} in $V_{n}\left([4]\right.$, cf. [1], [3]). In general, $M\left(\rho_{n}\right) \geq n+1$ since each $\pi^{i} V_{n}$ is stable under the Galois action and so $U_{n, i}$ for each $0 \leq i \leq n-1$ is stable. Also, there is a certain relationship between $M\left(\rho_{n}\right)$ and the size of the image of Galois representations. For instance, if ρ_{n} is surjective, then $M\left(\rho_{n}\right)=n+1$, because G_{K} acts transitively on $U_{n, i}$ for each $0 \leq i \leq n-1$ ([4], Theorem 4). Applying this result to the n-torsion subgroup $E[n]$ of an elliptic curve without complex multiplication, we proved that $M(E[n])$ is equal to the divisor function $d(n)$ for all integers n prime to a certain

Received March 22, 2016; revised May 17, 2016; accepted July 5, 2016.
2010 Mathematics Subject Classification: primary 11F80; secondary 11G05, 11N45.
Key words and phrases: Galois representations, torsion points, Galois orbits.
constant $C_{E / K}$ (which depends on E and K). The aim of this paper is to generalize the above result to the case where ρ_{n} is not necessarily surjective. For instance, our theorem is applicable if $d=2 g$ and $\operatorname{Im}\left(\rho_{n}\right)$ contains $\operatorname{Sp}_{2 g}\left(R / \pi^{n}\right)$, which is the case if ρ_{n} comes from an abelian variety of a rather general class:

Theorem 1.1. (=Corollary 3.3, §3) Let K be a number field and A an abelian variety defined over K. Suppose that $\operatorname{End}_{\bar{K}}(A)=\mathbb{Z}$ and $\operatorname{dim}(A)=$ odd or 2 or 6 . Then there exists an integer $C_{A / K}$ depending on A and K such that for all n prime to $C_{A / K}$, we have

$$
M(A[n])=d(n)
$$

where $d(n)$ is the number of positive divisors of n.

2. A Sufficient Condition for the Transitivity

In this section, we find a sufficient condition for the transitivity of the Galois action.

For a continuous representation $\rho_{n}: G_{K} \rightarrow \mathrm{GL}_{d}\left(R / \pi^{n}\right)$, we let $G_{n}:=\operatorname{Im}\left(\rho_{n}\right) \subset$ $\mathrm{GL}_{d}\left(R / \pi^{n}\right)$ and $\varpi_{m}: \mathrm{GL}_{d}\left(R / \pi^{m+1}\right) \rightarrow \mathrm{GL}_{d}\left(R / \pi^{m}\right)$ a mod π^{m} reduction map for an integer $1 \leq m<n$.

For each $0 \leq i<m$, the actions of G_{m} on $U_{m, i}=\pi^{i} V_{m} \backslash \pi^{i+1} V_{m}$ and G_{m-i} on $U_{m-i, 0}=V_{m-i} \backslash \pi V_{m-i}$ are compatible in the sense that

$$
\begin{equation*}
g\left(\pi^{i} v\right)=\pi^{i}(\bar{g} v) \tag{*}
\end{equation*}
$$

for all $g \in G_{m}$ and $v \in V_{m-i}$, where \bar{g} is the $\bmod \pi^{m-i}$ reduction of g.

In particular, the action of G_{m} on $\pi^{m-1} V_{m}$ and G_{1} on V_{1} are compatible, so G_{m} acts on V_{1} in the sense of $(*)$.

On the other hand, the kernel of ϖ_{m-1} is $1+\pi^{m-1} \mathrm{M}_{d}\left(R / \pi^{m}\right)$ for $m \geq 2$. Since $\pi^{m-1} x$ for $x \in \mathrm{M}_{d}\left(R / \pi^{m}\right)$ depends only on the class of $x(\bmod \pi)$, we may regard x as an element of $\mathrm{M}_{d}\left(R / \pi^{m}\right) / \pi \mathrm{M}_{d}\left(R / \pi^{m}\right) \simeq \mathrm{M}_{d}(k)$. So, we can identify each element of the kernel with $1+\pi^{m-1} x$ for some $x \in \mathrm{M}_{d}(k)$. We put

$$
\mathfrak{g}_{m}:=\left\{x \in \mathrm{M}_{d}(k) \mid 1+\pi^{m-1} x \in \operatorname{Ker}\left(\varpi_{m-1}\right) \cap G_{m}\right\} .
$$

Since $\left(1+\pi^{m-1} x\right)\left(1+\pi^{m-1} y\right) \equiv 1+\pi^{m-1}(x+y)\left(\bmod \pi^{m}\right), \mathfrak{g}_{m}$ is an abelian group under the addition. Via $(*)$, we regard V_{1} as \mathfrak{g}_{m}-module:

$$
\begin{aligned}
& \mathfrak{g}_{m} \subset \quad \mathrm{M}_{d}\left(R / \pi^{m}\right) / \pi \mathrm{M}_{d}\left(R / \pi^{m}\right) \quad \simeq \quad \mathrm{M}_{d}(R / \pi) \\
& (\quad) \\
& V_{m} / \pi V_{m} \simeq \quad V_{1}
\end{aligned}
$$

Lemma 2.1. We assume that
(1) the action of G_{1} on $V_{1} \backslash\{0\}$ is transitive, and
(2) for any $v^{\prime} \in V_{1}$ and $v \in V_{1} \backslash\{0\}$, there exists an $x \in \mathfrak{g}_{m}$ for each $2 \leq m \leq n$ satisfying $v^{\prime}=x v$.

Then G_{n} acts on $U_{n, i}$ transitively for each $0 \leq i \leq n-1$.
Proof. Since the action of G_{n} on $U_{n, i}$ is compatible with the action of G_{n-i} on $U_{n-i, 0}$ in the sense of $(*)$, we show that G_{m} acts on $U_{m, 0}$ transitively for $1 \leq m \leq n$. Use induction on m. If $m=1$, then it is trivial by the assumption (1). Assume
that G_{m-1} acts on $U_{m-1,0}$ transitively. Let $v, v^{\prime} \in U_{m, 0}=V_{m} \backslash \pi V_{m}$. By the assumption of the induction and using that ϖ_{m-1} is surjective, we have $g_{m} \in G_{m}$ such that $v^{\prime} \equiv g_{m} v\left(\bmod \pi^{m-1}\right)$. So, we may assume $v^{\prime} \equiv v\left(\bmod \pi^{m-1}\right)$. Then $v^{\prime}-v \in \pi^{m-1} V_{m} \simeq V_{1}$ and by the assumption (2), we have $x \in \mathfrak{g}_{m}$ satisfying $v^{\prime}-v=x\left(\pi^{m-1} v\right)$. Thus $v^{\prime}=v+x \pi^{m-1} v=\left(1+\pi^{m-1} x\right) v$ for $1+\pi^{m-1} x \in G_{m}$. Hence the proof is complete.

3. The Results

Theorem 3.1. If the image of ρ_{n} contains $\mathrm{SL}_{d}\left(R / \pi^{n}\right)$, then $M\left(\rho_{n}\right)=n+1$.
Proof. We use the same notation as in $\S 2$. Since $M\left(\rho_{n}\right) \geq n+1$, we may assume $G_{n}=\mathrm{SL}_{d}\left(R / \pi^{n}\right)$. We apply Lemma 2.1 with $G_{n}=\operatorname{SL}_{d}\left(R / \pi^{n}\right)$ by checking the assumptions therein. For assumption (1), it is well-known that the action of SL_{d} over a field k on $k^{\oplus d} \backslash\{0\}$ is transitive ([2], §4.7). For assumption (2), at first, we determine $\mathfrak{g}_{m}, 2 \leq m \leq n$. Since $\operatorname{det}(1+\pi x) \equiv 1+\operatorname{tr}(x) \pi\left(\bmod \pi^{2}\right)$, if $1+\pi x \in$ $\mathrm{SL}_{d}\left(R / \pi^{2}\right)$, we have $\operatorname{tr}(x) \equiv 0(\bmod \pi)$. So,

$$
\mathfrak{g}_{2}=\left\{x \in \mathrm{M}_{d}(k) \mid \operatorname{tr}(x)=0\right\}
$$

and similarly

$$
\begin{aligned}
\mathfrak{g}_{m} & =\left\{x \in \mathrm{M}_{d}(k) \mid 1+\pi^{m-1} x \in \mathrm{SL}_{d}\left(R / \pi^{m}\right)\right\} \\
& =\left\{x \in \mathrm{M}_{d}(k) \mid \operatorname{tr}(x)=0\right\}
\end{aligned}
$$

Hence we know that $\mathfrak{g}_{2}=\mathfrak{g}_{3}=\cdots=\mathfrak{g}_{n}$.
Now, let $v, v^{\prime} \in V_{1} \backslash\{0\}$. Then we show that there exists an element $x \in \mathfrak{g}_{2}$ satisfying $v^{\prime}=x v$. It is equivalent to showing that there exists an $x_{i} \in \mathfrak{g}_{2}$ satisfying $x_{i} v=e_{i}$ where $\left\{e_{1}, \cdots, e_{d}\right\}$ is the standard basis for V_{1}. We only show the case $i=1$. Other cases of i are similar. For a nonzero $v={ }^{t}\left(v_{1} \cdots v_{d}\right) \in V_{1}$, if $v_{1} \neq 0$, then we take $x_{1} \in \mathfrak{g}_{2}$ such that

$$
x_{1} v=\left(\begin{array}{ccccc}
v_{1}^{-1} & & & & \\
& 0 & & & \\
& & \ddots & & \\
& & & 0 & \\
t & & & & -v_{1}^{-1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{d}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

where $t=\left(v_{1}^{-1}\right)^{2} v_{d}$. If $v_{1}=0$ and $v_{i} \neq 0$ for some $i \neq 1$, then we take $x_{1} \in \mathfrak{g}_{2}$ such as

$$
x_{1} v=\left(\begin{array}{cccc}
0 & & v_{i}^{-1} & 0 \\
& \ddots & & \\
& & \ddots & \\
& & & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
v_{2} \\
\vdots \\
v_{d}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Therefore G_{n} acts on $U_{n, i}$ transitively for $0 \leq i \leq n-1$, so the number of orbits is $n+1$.

Remark 3.2. In general, if $G \subset \mathrm{GL}_{d}$ is an algebraic group over R and $G_{n}=$ $G\left(R / \pi^{n}\right)$, then \mathfrak{g}_{m} coincides for all positive integers $m \geq 2$.

From now on, we assume $d \geq 1$ is an even integer $d=2 g$.
Theorem 3.3. If the image of ρ_{n} contains $\mathrm{Sp}_{2 g}\left(R / \pi^{n}\right)$, then $M\left(\rho_{n}\right)=n+1$.
Proof. We use the same notation as in $\S 2$. Since $M\left(\rho_{n}\right) \geq n+1$, we may assume $G_{n}=\operatorname{Sp}_{2 g}\left(R / \pi^{n}\right)$. We apply Lemma 2.1 with $G_{n}=\operatorname{Sp}_{2 g}\left(R / \pi^{n}\right)$ by checking the assumptions therein. For assumption (1), it is well-known that the action of $\mathrm{Sp}_{2 g}$ over a finite field k on $k^{\oplus 2 g} \backslash\{0\}$ is transitive ([2], §8.5). For assumption (2), we determine $\mathfrak{g}_{m}, 2 \leq m \leq n$. If we let $J=\left(\begin{array}{cc}0 & \mathrm{I}_{g} \\ -\mathrm{I}_{g} & 0\end{array}\right)$, then we have

$$
{ }^{t}(1+\pi x) J(1+\pi x) \equiv J+\pi J x+\pi^{t} x J \quad\left(\bmod \pi^{2}\right) .
$$

So, if $1+\pi x \in \operatorname{Sp}_{2 g}\left(R / \pi^{2}\right)$, then we have $J x+{ }^{t} x J \equiv 0(\bmod \pi)$. Hence,

$$
\begin{aligned}
\mathfrak{g}_{2} & =\left\{x \in \mathrm{M}_{2 g}(k) \mid J x+{ }^{t} x J=0\right\} \\
& =\left\{\left.\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \mathrm{M}_{2 g}(k) \right\rvert\, B={ }^{t} B, C={ }^{t} C,{ }^{t} A=-D\right\} .
\end{aligned}
$$

Now, let $v=\binom{v_{1}}{v_{2}} \in V_{1} \backslash\{0\}$, where v_{1}, v_{2} are column vectors of $k^{\oplus g}$. We show that there exists an element $x_{i}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathfrak{g}_{2} \cap \mathrm{GL}_{2 g}(k)$ such that $v=x_{i} \mathbf{e}_{i}$ for each $1 \leq i \leq 2 g$, where $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{2 g}\right\}$ (resp. $\left\{e_{1}, \cdots, e_{g}\right\}$) is the standard basis for V_{1} (resp. $k^{\oplus g}$) (so $\mathbf{e}_{i}={ }^{t}\left(e_{i} 0\right)$ for $1 \leq i \leq g$). This implies $x_{i}^{-1} v=\mathbf{e}_{i}$. We only show the case $i=1$. Other cases of i are similar. We divide into two cases.

Case 1. v_{1} is a nonzero vector: Consider the equation

$$
v=\binom{v_{1}}{v_{2}}=x \mathbf{e}_{1}=\left(\begin{array}{cc}
A & B \\
C & -{ }^{t} A
\end{array}\right)\binom{e_{1}}{0}=\binom{A e_{1}}{C e_{1}} .
$$

Then we have $A e_{1}=v_{1}$ and $C e_{1}=v_{2}$. Since there exists a basis for $k^{\oplus g}$ containing v_{1}, we can find an invertible matrix with the first column v_{1}, which implies $A e_{1}=$ v_{1}. We take a symmetric matrix C with the first column v_{2} and $B=0$. Then $x=\left(\begin{array}{cc}A & 0 \\ C & -{ }^{t} A\end{array}\right)$ is invertible since $\operatorname{det} x=\operatorname{det} A \operatorname{det}\left(-{ }^{t} A\right) \neq 0$.

Case 2. $v_{1}=0$ and v_{2} is a nonzero vector: If we let $v_{2}={ }^{t}\left(t_{1} t_{2} \cdots t_{g}\right)$, then we take a symmetric matrix

$$
C=\left(\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{g} \\
t_{2} & a_{2} & 0 & 0 \\
\vdots & & \ddots & \vdots \\
t_{g} & 0 & \cdots & a_{g}
\end{array}\right)
$$

with the first column v_{2}. In this case, we have

$$
\operatorname{det} C=t_{1} a_{2} \cdots a_{g}-t_{2}^{2} a_{3} \cdots a_{g}-\cdots-t_{g}^{2} a_{2} \cdots a_{g-1}
$$

When $t_{i} \neq 0$ for some $i \neq 1$, if we let $a_{i}=0$, then we have

$$
\operatorname{det} C=-t_{i}^{2} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{g}
$$

When $t_{2}=\cdots=t_{g}=0$ and $t_{1} \neq 0$, then we have

$$
\operatorname{det} C=t_{1} a_{2} \cdots a_{g}
$$

Thus we can always find an invertible symmetric matrix C for any nonzero v_{2} such that $C e_{1}=v_{2}$. Hence if we take $A=0$ and any invertible symmetric matrix B, then $x=\left(\begin{array}{cc}0 & B \\ C & 0\end{array}\right)$ is invertible since $\operatorname{det} x=(-1)^{g} \operatorname{det} C \operatorname{det} B \neq 0$. Therefore the proof is complete.

Let A be an abelian variety defined over K of dimension g. We apply Theorem 3.2 to the Galois representations $\rho: G_{K} \rightarrow \operatorname{Aut}(A[n])$ over the n-division points of A. We write $M(A[n])$ for $M(\rho)$. The following corollary generalizes Corollary 5 of [4].
Corollary 3.4. Let K be a number field and A an abelian variety defined over K of dimension g. Suppose that $\operatorname{End}_{\bar{K}}(A)=\mathbb{Z}$ and $\operatorname{dim}(A)=$ odd or 2 or 6 . Then there exists an integer $C_{A / K}$ depending on A and K such that for all n prime to $C_{A / K}$, we have

$$
M(A[n])=d(n)
$$

where $d(n)$ is the number of positive divisors of n.
Proof. Let $n=\prod p^{e_{p}}$ be the prime factorization of n and

$$
\rho: G_{K} \rightarrow \operatorname{Aut}(A[n]) \simeq \mathrm{GL}_{2 d}(\mathbb{Z} / n \mathbb{Z}) \simeq \prod \mathrm{GL}_{2 d}\left(\mathbb{Z} / p^{e_{p}} \mathbb{Z}\right)
$$

the Galois representation on $A[n]$. By a theorem of Serre ([5], Théorème 3), there exists an integer $C_{A / K}$ such that the image of p-factor ρ_{p} of ρ is $\mathrm{GSp}_{2 g}\left(\mathbb{Z} / p^{e_{p}} \mathbb{Z}\right)$ for any prime $p \nmid C_{A / K}$. By Theorem 3.2, we have $M\left(A\left[p^{e_{p}}\right]\right)=e_{p}+1$ for such p. By the multiplicativity of $M(\rho)\left([4]\right.$, Cor. 3), we have for all n prime to $C_{A / K}$,

$$
\begin{aligned}
M(A[n]) & =\prod M\left(A\left[p^{e_{p}}\right]\right) \\
& =\prod\left(e_{p}+1\right) \\
& =d(n)
\end{aligned}
$$

References

[1] Yen-Mei J. Chen and Yen-Liang Kuan, On the distribution of torsion points modulo primes, Bull. Aust. Math. Soc., 86(2012), 339-347.
[2] P. M. Cohn, Algebra, Second edition Volume 3, John Wiley \& Sons, 1991.
[3] Hsiu-Lien Huang, The average number of torsion points on elliptic curves, J. Number Theory, 135(2014), 374-389.
[4] H. Moon, On the invariant $M\left(A_{/ K}, n\right)$ of Chen-Kuan for Galois representations, Proc. Japan Acad., 90(2014), 98-100.
[5] J.-P. Serre, Résumé des cours de 1985-1986, Annuaire du Collége de France (1986), 95-99.

