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Abstract. In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing

set if no two vertices of S have a common neighbour in G. The maximum cardinality of an

open packing set is called the open packing number and is denoted by ρo. In this paper,

we examine the effect of ρo when G is modified by deleting a vertex.

1. Introduction

All graphs considered in this article are finite, undirected, with neither loops
nor multiple edges. For graph theory terminology not presented here, we follow
Chartrand and Lesniak [1].

The open neighbourhood of a vertex v ∈ V , denoted by N(v), is defined to be
N(v) = {x ∈ V : vx ∈ E}; the set of all vertices which are adjacent to v. The
closed neighbourhood of a vertex v ∈ V is denoted by N [v] and is defined to be
N [v] = N(v) ∪ {v}. The subgraph induced by a set S of vertices of a graph G is
denoted by < S > where V (< S >) = S and E(< S >) = {(u, v) ∈ E(G) : both u
and v are in S}. By a major vertex, we mean a vertex that is adjacent to all other
vertices of the graph. For an integer l ≥ 1, we define the l− corona of a graph G to
be the graph of order (l+ 1) |V (G)| obtained from G by attaching a path of length
l to each vertex of G so that the resulting paths are vertex-disjoint. The 1− corona
of G is also called the corona of G. The fan graph denoted by Fn is the 1-point
union of n copies of the cycle C3. That is, Fn is a graph of order 2n + 1 and size
3n obtained by attaching n copies of a triangle at a vertex.

A set S of vertices of G is an open packing set of G if the open neighbourhoods
of the vertices of S are pairwise disjoint in G. The lower open packing number of G,
denoted by ρoL(G), is the minimum cardinality of a maximal open packing set of G
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while the open packing number of G, denoted by ρo(G), is the maximum cardinality
among all open packing sets of G. An open packing set of G with cardinality ρoL(G)
and ρo(G) are respectively called the ρoL-set and ρo-set of G. For basic results on
open packing number see [3], [4] and [5].

The study of the effect of removal of a vertex or an edge on any graph theoretic
parameter has interesting applications in the context of network. For instance, a
detailed study of this kind associated with the concept of domination can be seen
in [2]. As far as, the open packing number ρo(G) is concerned, it may increase or
decrease or remain unchanged when a vertex is removed from G. For example, in a
star graph K1,n (n ≥ 3), removal of the center vertex increases the value of ρo by
n − 2 and the removal of any pendant vertex does not alter the value of ρo. Also,
in the 1−corona of a complete graph, the removal of any pendant vertex decreases
the value of ρo. So, one can partition V (G) into three sets V 0, V + and V −, where

V 0(G) = {v ∈ V : ρo(G− v) = ρo(G)}

V +(G) = {v ∈ V : ρo(G− v) > ρo(G)}

V −(G) = {v ∈ V : ρo(G− v) < ρo(G)}

This paper initiates an investigation of the properties of these sets. We need the
following results.

Theorem 1.1([5]). If G is a connected graph on n vertices with ∆(G) = n − 1,
then ρo(G) ≤ 2. Further, ρo(G) = 2 if and only if δ(G) = 1 and ρoL(G) = 2 if and
only if G is a star.

Theorem 1.2([5]). Let G be a graph of diameter 2, then ρo(G) ≤ 2.

Theorem 1.3([3]). If G is a connected graph of order n ≥ 3, then ρo(G) ≤ 2n
3 .

Theorem 1.4([4]). Let G be a connected graph of order n ≥ 3. Then ρo(G) = 2n
3

if and only if G is the 2-corona of a connected graph.

2. Examples

Here, we determine the sets V 0, V − and V + for some common classes of graphs
such as paths, cycles, complete multi-partite graphs and the Petersen graph. For
this purpose, we need the following lemma.

Lemma 2.1. If G is a disconnected graph with components G1, G2, ..., Gr, then
ρo(G) =

∑r
i=1 ρ

o(Gi) and ρoL(G) =
∑r

i=1 ρ
o
L(Gi).

Proof. Let Si, where 1 ≤ i ≤ r, be a maximal open packing set of the component Gi.
In order to prove the lemma, we need to prove two facts. One is the set S = ∪ri=1Si

is a maximal open packing set of G and the other one is the intersection of a maximal
open packing set of G with the vertex set V (Gi) of each component Gi is a maximal
open packing set of Gi. First fact is obvious, for if there is a vertex v /∈ S of G,
say in Gi, such that S ∪ {v} is an open packing set of G, then S ∪ {vi} is also an
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open packing set of Gi, contradicting the maximality of Si. Now, if D is a maximal
open packing set of G such that D∩V (Gi) is not a maximal open packing set of Gi

for some i, then choose a vertex vi /∈ D in Gi with (D ∩ V (Gi)) ∪ {vi} is an open
packing set of Gi so that D ∪ {vi} is an open packing set of G, again contradicting
the maximality of D. 2

The exact values of ρo for paths and cycles are given in [3].

Proposition 2.2([3]). For n ≥ 2, then ρo(Pn) =


n
2 if n ≡ 0(mod 4),⌊
n+2
2

⌋
otherwise.

Proposition 2.3([3]). For n ≥ 3, then ρo(Cn) =


n
2 − 1 if n ≡ 2(mod 4),⌊
n
2

⌋
otherwise.

With the aid of the above propositions and the Lemma 2.1, one can determine
the sets V o, V − and V + for paths as follows.

Proposition 2.4. For the path Pn = (v1, v2, ..., vn) on n ≥ 2 vertices, we have

(i) If n ≡ 0 (mod 4), then V 0={vr : r ≡ 0 or 1(mod 4)} and V + = V − V 0.

(ii) If n ≡ 1 (mod 4), then V 0={vr : r ≡ 0 or 2(mod 4)}, V +={vr : r ≡
3(mod 4)} and V −={vr : r ≡ 1(mod 4)}.

(iii) If n ≡ 2 (mod 4), then V 0={vr : r ≡ 0 or 3(mod 4)} and V − = V − V 0.

(iv) If n ≡ 3 (mod 4), then V = V 0.

Proof. Suppose n ≡ 0 (mod 4). Let n = 4k, for some positive integer k. Then
by Proposition 2.2, we have ρo(Pn) = 2k. Now removal of the vertex vr, where
r ≡ 0 or 1 (mod 4) will split the path Pn into two paths P4k1

and P4k2+3, for some
non-negative integers k1 and k2 such that k1 + k2 = k − 1. Therefore, it follows
from Proposition 2.2 and Lemma 2.1, that ρo(Pn − vr) = ρo(P4k1

) + ρo(P4k2+3) =
2k1 +2k2 +2 = 2(k1 +k2)+2 = 2(k−1)+2 = 2k = ρo(Pn) and so vr ∈ V 0. Also, if
r ≡ 2 or 3 (mod 4), then Pn−vr = P4k1+1∪P4k2+2, for some non-negative integer k1
and k2 such that k1+k2 = k−1. Therefore, ρo(Pn−vr) = ρo(P4k1+1)+ρo(P4k2+2) =
2k1 + 1 + 2k2 + 2 = 2(k1 + k2) + 2 = 2(k − 1) + 3 = 2k + 1 = ρo(Pn) + 1 and thus
vr ∈ V +. This proves (i) and the remaining can be proved in the similar fashion. 2

As did above, one can determine the sets V 0, V − and V + for cycles with the
aid of Proposition 2.3 as follows.

Proposition 2.5. For the cycle Cn = (v1, v2, ..., vn) on n ≥ 3 vertices, we have

V =

{
V 0 if n ≡ 0, 1(mod 4),

V + otherwise.



748 I. Sahul Hamid and S. Saravanakumar

Proposition 2.6. If G is the Petersen graph, then V (G) = V +(G).

Proof. As the Petersen graph G is of diameter 2, it follows from Theorem 1.2 that
ρo(G) ≤ 2 and also any two adjacent vertices of G form an open packing set so that
ρo(G) = 2. Further, for any vertex v in the Petersen graph, its open neighbourhood
N(v) forms an open packing set of G − v so that ρo(G − v) ≥ 3 and therefore
v ∈ V +(G). Thus V +(G) = V (G). 2

Proposition 2.7. Let G be a complete k-partite graph of order n ≥ 3, which is not
a star. Then V (G) = V 0(G) when k 6= 3, and when k = 3, the set V +(G) is the
union of the parts of G with exactly one vertex and V 0(G) = V (G)− V +(G).

Proof. It is obvious that the value of ρo(G) is 2 when k = 2 and it is 1 when k ≥ 3.
Let (V1, V2, . . . , Vk) be the partition of G. If k = 2, then each of V1 and V2 is of
cardinality at least two so that removal of any vertex from G results in a bipartite
graph whose ρo value is 2 and thus V = V 0. When k = 3, removal of a vertex that
is the only vertex of a part results in a complete bipartite graph for which ρo = 2.
Further, removal of a vertex that belongs to a part of cardinality more than one
results in again a complete tripartite graph for which ρo(G) = 1. Thus V + is the
union of parts of cardinality one and V 0 = V − V + as V − = φ. As, when k ≥ 4,
removal of any vertex gives a complete (k−1)−partite graph it follows that V = V 0.

2

3. Properties of the Sets

This section investigates the properties of the vertices in a graph G belonging
to the sets V 0(G), V +(G) and V −(G). Even if the removal of a vertex can increase
the open packing number arbitrarily, we observe that the removal of a vertex can
decrease the open packing number by at most one because of the fact that S − {v}
is an open packing set of G − v whenever S is an open packing set of a graph G.
That is,

Observation 3.1. For any vertex v in a graph G, ρo(G)− 1 ≤ ρo(G− v).

Theorem 3.2. Let G be a graph of order at least two. A vertex v ∈ V − if and only
if every ρo- set S of G contains v and S − {v} is a ρo- set of G− v.
Proof. Assume that v ∈ V −. Suppose there is a ρo-set S of G such that v /∈ S.
Then S is an open packing set of G − v so that ρo(G − v) ≥ ρo(G). Therefore
v /∈ V −, which is a contradiction. Thus v lies in every ρo-set of G. Since S − {v}
is an open packing set of G − v and v ∈ V −, it follows from Observation 3.1 that
S − {v} is a ρo-set of G− v. Converse is obvious. 2

Corollary 3.3. For any connected graph G of order n ≥ 4, we have |V −| ≤ 2n
3 ,

with equality only when G is the 2−corona of a connected graph.

Proof. As by Theorem 3.2 the set V −(G) is contained in any ρo-set of G, the
inequality follows from Theorem 1.3. Further, |V −(G)| = 2n

3 implies that ρo(G) =
2n
3 and so G is by Theorem 1.4 the 2-corona of a connected graph. On the other
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hand, in a 2-corona G of a connected graph, the value of ρo gets reduced by 1 when
a pendant vertex or a support vertex is removed whereas it remains unchanged

when any of the other vertices is removed. Hence |V −(G)| = 2|V (G)|
3 . 2

The following theorem provides a sufficient condition for a vertex v belonging
to the set V +.

Theorem 3.4. If w is a vertex of G having two neighbours of degree two that are
adjacent, then w ∈ V +.

Proof. Let u and v be two neighbours of w that are adjacent such that deg u = deg
v = 2. Let S be a ρo-set of G. Obviously, S contains at most one of the vertices
u, v and w. Suppose u ∈ S. Certainly, S is also an open packing set of G− w. In
fact, the set S ∪ {v} itself is an open packing set of G− w as the edge uv is one of
the components of G − w. Therefore, ρo(G − w) ≥ |S| + 1 = ρo(G) + 1 and thus
w ∈ V +. The similar argument holds true when v ∈ S. Also, if w ∈ S, then the set
(S − {w}) ∪ {u, v} is an open packing set of G− w so that ρo(G− w) > ρo(G). 2

Theorem 3.5. If a vertex v ∈ V +, then v is adjacent to at least two vertices in
every ρo-set of G− v.
Proof. If there exists a ρo-set S of G − v such that the vertex v has at most one
neighbour in S, then S is also an open packing set of G so that ρo(G) ≥ |S| =
ρo(G−v), a contradiction to the assumption that v ∈ V +. Hence the result follows.
2

Corollary 3.6. A pendant vertex v lies either in V − or in V 0 and further v ∈ V −
if and only if v lies in every ρo-set of G.

Proof. The fact that v ∈ V − ∪ V 0 is immediate in view of Theorem 3.5. Further,
suppose a pendant vertex v lies in every ρo-set of G. Being v is a pendant vertex,
every open packing set of G − v is also an open packing set of G. Therefore, the
vertex v must lie in V −(G); for otherwise we can have a ρo-set of G not containing
v. Converse is already proved in Theorem 3.2. 2

Corollary 3.7. If a pendant vertex v lies in V −(G), then it is the only pendant
neighbour to its support.

Proof. When the support vertex of v has a pendant neighbour other than v it is
possible to get a ρo-set of G leaving the vertex v and so by Corollary 3.6, the vertex
v cannot be in V −. 2

Remark 3.8. The converse of each of Theorem 3.4 and Theorem 3.5 is not true.
For example, the center vertex of the star K1,n (n ≥ 3) lies in V +, whereas it does
not lie on any triangle. On the other hand, in the path Pn, where n ≡ 3(mod 4),
the two neighbours of a support vertex u lie in every ρo -set of G− u, whereas u is
not in the set V +.
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4. Graphs of Diameter Two

In this section, we study the effect of ρo(G) upon removal of vertices from
graphs G of diameter two. More specifically, we determine the classes of graphs
G of diameter two for which (i) V (G) = V +(G) (ii) V (G) = V −(G) and (iii)
V (G) = V 0(G). Recall that the value of ρo(G) when G is of diameter two is either
1 or 2. So, the characterization of those classes of graphs with diameter two is
done in two cases namely when ρo(G) = 1 and when ρo(G) = 2; that are stated
respectively in Theorem A and Theorem B. In this connection, let us define for our
convenience some terminologies. We define a vertex v to be the private common
neighbour of a pair of distinct vertices (u,w) if N(u) ∩ N(w) = {v}. The private
common neighbour set of a vertex v is a subset B ⊆ N(v) such that v is the private
common neighbour of every pair of vertices of B. The private common degree of
v is the cardinality of its private common neighbour set and is denoted by pd(v).
Note that pd(v) is either 0 or at least two.

Theorem A. Let G be a graph of diameter two with ρo(G) = 1. Then V = V 0 if
and only if pd(v) = 0 for all v ∈ V (G).

Theorem B. Let G be a graph of diameter two with ρo(G) = 2. Then

(a) there is no graph G with V (G) = V −(G).

(b) V (G) = V +(G) if and only if pd(v) ≥ 3.

(c) V (G) = V 0(G) if and only if for any vertex v ∈ V (G), either pd(v) = 2 or
pd(v) = 0 with the property that there is an edge in G − v not lying on a
triangle in G− v.

These two theorems are proved by the following lemmas.

Lemma 4.1. Let G be a graph with diameter 2 . Then a vertex v ∈ V +(G) if and
only if its private common degree is at least 2 or 3 according as ρo(G) is 1 or 2.

Proof. Suppose v ∈ V +(G). Let S be ρo-set of G − v. By Theorem 3.5 the vertex
v is adjacent to at least two vertices of S, say x and y. If ρo(G) = 1, then v is
the private common neighbour of the pair (x, y) as S is an open packing set of
G− v so that pd(v) ≥ 2. Suppose ρo(G) = 2. Then |S| ≥ 3. Now, choose a vertex
z /∈ {x, y} in S such that it is not adjacent with one of the vertices x and y, say x.
As diam(G)=2, we have d(x, z) = 2 and also the vertices x and z have no common
neighbour in G − v. Therefore, v is the only common neighbour of x and z in G.
That is, v is the private common neighbour of the pair (x, z). Certainly, v is also
the private common neighbour of the pairs (x, y) and (y, z) in G as S is an open
packing set of G− v and hence pd(v) ≥ 3.

Conversely, suppose ρo(G) = 1 and pd(v) ≥ 2. Then there exist two vertices u
and w such that v is the private common neighbour of the pair (u,w) so that {u,w}
forms an open packing set of G− v and therefore ρo(G− v) ≥ 2. Hence v ∈ V +(G).
Now, suppose ρo(G) = 2 and pd(v) ≥ 3. Then the private common neighbour set
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B of v forms an open packing set of G− v and |B| ≥ 3 so that ρo(G− v) ≥ 3. Thus
v ∈ V +(G). 2

Lemma 4.2. Let G be a graph such that ρo(G) = 2. Then v ∈ V −(G) if and only
if v lies in every ρo-set of G and pd(v) = 0.

Proof. Suppose v ∈ V −(G). By Theorem 3.2, the vertex v lies in every ρo-set of
G. Further, as the private common neighbour set B of the vertex v forms an open
packing set of G − v, it follows that |B| = 0; for otherwise ρo(G − v) ≥ |B| ≥ 2, a
contradiction to the assumption that v ∈ V −. Thus pd(v) = 0.

Conversely, suppose the vertex v lies in every ρo-set of G and pd(v) = 0. Let
S be a ρo-set of G − v. As pd(v) = 0, the set S is an open packing set of G and
consequently |S| ≤ 2. Certainly, |S| cannot be 2; if not S becomes a ρo-set of G not
containing the vertex v, a contradiction to the assumption. 2

Lemma 4.3. Let G be a graph with diam(G) = 2 and ρo(G) = 2. Then a vertex
v ∈ V 0(G) if and only if one of the following holds.

(i) pd(v) = 2

(ii) pd(v) = 0 with the property that G − v contains an edge not lying on any
triangle of G− v.

Proof. If v is a vertex with pd(v) = 2, then ρo(G − v) ≥ 2 as the private common
neighbour set of v is always an open packing set of G−v. However, Lemma 4.1 says
that the vertex v cannot be in V +(G) so that v ∈ V 0(G). On the other hand, let v
be a vertex as in (ii) and let xy be an edge in G − v not lying on any triangle of
G−v. Then {x, y} becomes an open packing set of G−v and so again by Lemma 4.1
the vertex v belongs to V 0(G). Conversely, if v lies in V 0(G) such that pd(v) 6= 2,
then pd(v) = 0 in view of Lemma 4.1. Consider a ρo-set {x, y} of G − v. If x and
y are adjacent, then the edge xy will serve the purpose and in fact it is true; for
otherwise they both must be adjacent to the vertex v being diam(G) = 2, which is
however not possible because pd(v) = 0. 2

Lemma 4.4. Let G be a graph with ρo(G) = 2. Then V (G) = V −(G) if and only
if every component of G is either K1 or K2.

Proof. Suppose V (G) = V −(G). Then by Theorem 3.2, the vertex set V (G)
becomes a ρo-set of G and hence the fact that each component of G is either K1 or
K2 follows immediately from the definition of open packing. Converse is obvious.

2

Now, Theorem A immediately follows from Lemma 4.1. Note that, as any
vertex of a graph G with ρo(G) = 1 is either in V + or in V 0, Theorem A can
also be stated as “for a graph G of diameter 2 with ρo(G) = 1, V (G) = V +(G)
if and only if pd(v) ≥ 2 for all v ∈ V (G)”. Further, Theorem B is an immediate
consequence of the remaining lemmas. Of course, Theorem A and B do not provide
the structural characterization of those graphs of diameter two for which whole
vertex set equals one of the sets V +, V − and V 0; however as you can see below,
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they are helpful in determining the complete structure of such graphs when they
admit a major vertex. By a half support in a graph G, we mean a vertex that is
adjacent to a vertex of degree 2 in G.

Proposition 4.5. Let G be graph on n ≥ 4 vertices with ∆(G) = n − 1 and
δ(G) = 1. Then

(a) If there are more than one pendant vertices in G, then V + = {u} and V 0 =
V − {u}, where u is the unique vertex with deg u = n− 1.

(b) If there exists exactly one pendant vertex, say x, then (i) V − = {x} (ii)
V + = φ or {u} with V + = {u} if and only if pd(u) ≥ 3.

Proof. Since δ(G) = 1, the graph G contains exactly one major vertex, say u.
Suppose there are more than one pendant vertices in G. Then pd(u) ≥ 3 and
consequently Lemma 4.1 implies that u ∈ V +. Further, as the vertex u together
with one of its pendant neighbours forms an open packing set of G − w for each
w ∈ N(u) we have w ∈ V 0 ∪ V +. But w /∈ V + as pd(w) ≤ 2. Thus V + = {u} and
V 0 = V − {u}.

Now, if x is the only pendant neighbour of u, then the set {x, u} is the unique
ρo-set of G. Therefore Lemma 4.2 implies that w /∈ V −, for all w ∈ N(u) − {x}.
Also, pd(x) = 0 and pd(w) ≤ 2, for all w ∈ N(u) − {x}. Therefore x ∈ V − by
Lemma 4.2 and w /∈ V + by Lemma 4.1. Hence V − = {x} and N(u) − {x} ⊆ V 0

and of course V + = {u} or φ. The rest follows again by Lemma 4.1. 2

Proposition 4.6. Let G be graph on n ≥ 4 vertices with ∆(G) = n − 1 and
δ(G) ≥ 2. Then V −(G) = φ and further

(a) If G contains more than two major vertices, then V = V 0.

(b) If G contains exactly two major vertices, say u and v, then V + = φ or {u, v}
with V + = {u, v} only when δ(G) = 2.

(c) Suppose G contains exactly one major vertex, say u. Then (i) when δ(G) = 2,
V + = S, where S is the set of all half supports of G. (ii) when δ(G) ≥ 3,
V + = φ or {u} with V + = {u} if and only if pd(u) ≥ 2.

Proof. Certainly, V −(G) = φ as ρo(G) = 1 when δ(G) ≥ 2. Consider a non-
major vertex w of G that is also a half support. Let w′ be a vertex of degree 2
that is adjacent to the vertex w. Then w is the private common neighbour of the
vertex w′ and a major vertex. Therefore pd(w) ≥ 2 and so by Lemma 4.1 we have
w ∈ V +(G). On the other hand, if a non-major vertex v is not a half support,
then every neighbour of v has degree at least 3. As a result, the private common
neighbour set of v is empty so that pd(v) = 0 and so again by Lemma 4.1 that
v /∈ V +(G). So, the conclusion we draw is that a non-major vertex belongs to
V +(G) only if it is a half support in G. We need to discuss what are the major
vertices that belong to V +(G).
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Now, suppose G has more than two major vertices. Then there is no half
support and so no non-major vertex belongs to V +(G). Further, the major vertices
also not in V +(G) as they are of private common degree zero and thus V +(G) = φ.
Suppose G has exactly two major vertices, say u and v. Then no non-major vertex
is a half support in G so that thy are not in V +(G). However, if there is a vertex
of degree 2, then both u and v are of private common degree 2 so that they will be
in V +(G); and conversely. Thus V +(G) = {u, v} or φ with V +(G) = {u, v} only
when δ(G) = 2.

In case, there is exactly one major vertex, say u. Certainly, pd(u) ≥ 2 when
δ(G) = 2 so that u ∈ V +(G). Therefore, when δ(G) = 2, V +(G) is the set of all
half supports. When δ(G) ≥ 3, no vertex is a half support so that no non-major
vertex belongs to V +(G). However, the vertex u may belong to V +(G) and it is
possible only when pd(u) ≥ 2. 2

Now, the above two results constitute the following.

Theorem 4.7. If G is a graph of order n ≥ 2 with ∆(G) = n − 1 and δ(G) = 1,
then it is not possible that V (G) = V +(G). Further, (i) V (G) = V −(G) if and only
if G is K2 (ii) V (G) = V 0(G) if and only if G is P3. 2

Theorem 4.8. Let G be a graph of order n ≥ 4 such that ∆(G) = n−1 and δ(G) ≥
2. Then (i) V (G) = V +(G) if and only if G is a Fan graph (ii) V (G) = V 0(G) if
and only if either G has more than two major vertices or, δ(G) ≥ 3 and the major
vertex is of private common degree zero in the case when G has exactly one major
vertex.

5. Open Problems

The study of the effect of the removal of a vertex or an edge on any graph
theoretic parameter has interesting applications in the context of network. This
type of study has been carried out in the case of domination number. In this paper,
a similar study has been initiated with respect to the open packing number for a
graph G. We conclude the paper by listing some interesting problems and directions
for further research that we encounter during the course of our investigation.

1. Obtain a necessary and sufficient condition for the vertices of a graph G that
belonging to the sets V +(G) and V 0(G).

2. Determination of the sets V +, V − and V 0 in the case of trees and regular
graphs seems to be a little challenging problems.

3. Obtain good bounds for |V −(G)|,
∣∣V 0(G)

∣∣ and |V +(G)| of a graph G.

4. Similar study can be initiated for edge removal.

5. By analogy with the bondage number for domination, one can define the open
packing bondage number ob(G) of a graph G to be the minimum number of
edges whose removal results in a graph H such that ρo(H) > ρo(G). This
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parameter is well defined as the value of ρo for the totally disconnected graph
is its order. Now, one can initiate a study on this parameter.
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