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ABSTRACT. In this paper, we establish some new P-@Q type modular equations, by using
the modular equations given by Srinivasa Ramanujan.

1. Introduction

In Chapter 16 of his second notebook [9], S. Ramanujan developed, theory of
theta-function and his theta-function is defined by

fla,b) := Z a1/ 2pn(n=1)/2, |abl < 1.

n—=—oo

Note that, if we set a = ¢**, b = ¢~%*, where z is complex and I'm(7) > 0, then
f(a,b) = 95(z,7), where ¥3(z,7) denotes one of the classical theta-functions in its
standard notation [16, p. 464]. The three most important special cases of f(a,b)
[4, p, 36] are

P@):=Fla.0)= D ¢ = (a0 (@6 = & e

il (=9
N e Culw [
f0) = f-a. ") = D (1" = (g:0)e-

After Ramanujan, we define

X(@) = (-4 ¢*) s>
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where we employ the customary notation

o0

(a:q)oo = [ [ (1 = ag™), lq| < 1.

n=0

We now define a modular equation as given by Ramanujan. The complete elliptic
integral of the first kind K (k) is defined by
o] 1
<§)nk2n _ Z2F1 (1 1,1;]{/,2)’

/2 d(b T
) K('“)::/o N P N oL i il

n=0

(1.1

where 0 < k < 1. The series representation in (1.1) is found by expanding the
integrand in a binomial series and integrating termwise and o F} is the ordinary or
Gaussian hypergeometric function defined by

oF1(a,b;c; z) = Z(C(li;rf?!"z"7 |z| < 1,

n=0
with P(a+ k)
a+
(a)k - F(a) .
where a, b and c are complex numbers such that c is not a nonpositive integer. The
number k is called the modulus of K and k' := /1 — k2 is called the complementary
modulus. Let K, K’, L and L’ denote the complete elliptic integrals of the first
kind associated with moduli k, k' [ and I’ respectively. Suppose that the equality
K L
1.2 = =
holds for some positive integer n. Then a modular equation of degree n is a relation
between the moduli & and ! which is implied by (1.2). Ramanujan recorded his
modular equations in terms of a and 3, where o = k? and 8 = [2. We often say
that 8 has degree n over «. The multiplier m is defined by

Ramanujan [4, p. 122-124] recorded several formulae for ¢,v, f and x at different

arguments of o ¢ and z := gFl(%, %; 1; ) by using

2 11
0 = 2K =oF (5110, 1= cop(~mK'/K)
Ramanujan’s modular equations involve quotients of function f(—g¢) at certain ar-

guments. For example [5, p. 206], let

_ (=9 _ =4
PEmiee M 9T gy
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then

5 Q\* [/P\*

(1.3) PQ+ s - (P) ; (Q) |
These modular equations are also called Schlafli-type. Since the publication of [5],
several authors, including N. D. Baruah [2], [3] M. S. M. Naikia [7], [8] K. R. Vasuki
[12], [13] and K. R. Vasuki and B. R. Srivatsa Kumar [14] have found additional
modular equations of the type (1.3). Recently C. Adiga, et. al. [1] have established
several modular relations for the Rogers-Ramanujan type functions of order eleven
which analogous to Ramanuja’s forty identities for Rogers-Ramanujan functions and
also they established certain interesting partition-theoritic interpretation of some of
the modular relations and H. M. Srivastava and M. P. Chaudhary [11] established
a set of four new results which depicit the interrelationships between g¢-product
identities, coninued fraction identities and combinatorial partition identities.

On page 366 of his ‘Lost’ notebook [10], Ramanujan has recorded a continued
fraction

q
G(q) = — <1,
(9) 1 + 1 + 1 4. la

and claimed that there are many results of G(¢q) which are analogous to the famous
Roger’s-Ramanujan continued fraction. Motivated by Ramanujan’s claim H. H.
Chan [6], N. D. Baruah [2], K. R. Vasuki and B. R. Srivatsa Kumar [15] have
established new identities providing the relations between G(q) and seven continued
fractions G(—q), G(¢%),G(¢*),G(¢%), G(q¢"),G(¢*!) and G(q'3). We conclude this
introduction by recalling certain results on G(q) stated by Ramanujan [4] and H.
H. Chan [6].

(1.4) G(—q) == q1/3;(((q‘13))

where x(q) is defined as x(q) = (—¢; ¢*)oo-

(1.5) G(q) + G(—q) +2G*(—q)G*(q) = 0
and
(1.6) G*(q) +2G*(¢*)G(q) — G(¢*) = 0.

For a proof of (1.5) and (1.6), see [6].
Motivated by the above works in this paper, we establish some new P-Q type mod-
ular equations, by employing Ramanujan’s modular equations.
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2. Main Results
Theorem 2.1. If

. x(9)x(¢°) asx(@)x(q
X = ql/sm and Y = q2/3q7

then

2X?% —22Y4X3 — 2V +4Y2X — 18X2Y3 +17Y9X?% — 10Y8X + 17Yv10X3 4 Y X

+34Y5 X +328Y 7 X3 ~160Y° X2 -30Y " X®—30Y S X5 +12Y° X1 371V X1 +328Y? X°

—10YM X4 -160Y 1O X0 434y 1 X722V O X B 412V X T4y 1 X 1018y 10 X0 2y 12 X 1!
+10Y2X?* 4+ 20V X6 +20Y° X8 + 10X10y® + 2v10X12 — 0.

Proof. From (1.4) and the definition of X and Y, it can be seen that
(2.1) B—-AX =0 and C — BY =0.

where A = G(—q), B = G(—¢?) and C = G(—¢*). On changing q to ¢* in (1.5), we
have

(2:2) G(q*) + G(=¢*) +2G*(—¢*)G*(¢") = 0
and also change ¢ to —¢ in (1.6), we have
(2.3) G*(—q) +2G*(¢*)G(—q) — G(¢*) = 0.
Eliminating G(¢?) between (2.2) and (2.3) using Maple,
(2.4) 2(AB)* — 4(AB)® + 3(AB)?> + AB+ A® + B®> = 0.
Now on using first identity of (2.1) in (2.4), we obtain
(2.5) 2B% —4B*X +3B*X? + X* + BX + BX* =0.
On replacing q to ¢% in (2.4) we see that

2(BC)* — 4(BC)® 4+ 3(BC)? + BC + B® + C3 = 0.
Using second identity of (2.1) in the above, it is easy ton see that

2BSY* —4B*Y3 +3B%Y2+Y + B+ BY?=0.
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Finally, on eliminating B between (2.5) and the above, using Maple we obtain
P(X,Y)Q(X,Y) =0,
where
P(X,Y)=X —16Y*X? - 6XY?® - 6Y° X3 - 2V° + Y°X° 4+ 10Y3X* 4 10Y2X?
+5Y X2 +5Y4X° —2vY0X
and
Q(X,Y) = —2Y +2X% - 22V X3 4 4Y2X — 18X 2Y3 + 17V X2 —10Y 3 X + 17V 10 X3
+Y M X +328Y7 X3 4+34Y° X —160Y° X% —30Y " X6 —30Y° X +12Y° X* —18Y 10 X*
—371Y8 X% 4 328Y2X° — 10y X — 160Y10X6 + 34y X7 — 22YV9X® + 128 X7
+4Yy 1 X100 oy 2 XM 4 oy tOX 12 410y 2 XY 420V X8 + 20V X6 + 10X 10V,

By examining the behavour of the first factor near ¢ = 0, it can be seen that there
is a neighbourhood about the origin, where P(X,Y) # 0 and Q(X,Y) = 0 in this
neighbourhood. Hence by the identity theorem, we have Q(X,Y) = 0. O]

Theorem 2.2. If

2(.3
= e _X ) (@) and

. 1/3 XQ(QB)
x(2)x(¢%) Yi=a x(q?)x(q'®)

then

(é): (%)S-F{(XY)E’)M + W +11 ((XY)I/2 + W)} {(;()3/2 + (1)3/2]

(2.6)
= (XY)3+

XV —11 <(XY)2 + (X1Y)2 )+44 <XY + %)w (X3 + %)m (Y3 + %) —86.

Proof. From Entry 12(v)of Chapter 17 [4, p. 124], we have

ay(l—a)(1—~) ) /*
27 X~

where 5 and =y be of the third and ninth degrees respectively, with respect to a. Let

. 1/3 XQ(—QG)
Bi=q X(=g*)x(—¢'®)’
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Then from Entry 12(vii) of Chapter 17 [4, p. 124], we have
1/24
2.8) B { a?~%(1 - B)? } / .
pr1—a)(1-7)
By (2.7) and (2.8), we deduce that
1/8 1/8 2
ay (1-a)(1-7) X
2.9 — =XB d — = —.
%) <52> o { (1- 57 B
From Entry 3 (xii) and (xiii) of Chapter 20 [4, p. 352-358], we have

(210 (f;)m " (%)1/4 - (cw(ﬁlzila_)(ﬁl)i v))l/4 N _%7?

and

n () (S () -

where m = z1 /23 and m’ = z3/29. Thus (2.9), (2.10) and (2.11) yields

M(X?B*+ X*-B*X% -B?=0 and X*+X?B*-B*>+3MX°B*=0.
where M = m/m’'. Which implies
(2.12) X6B% —6B*X* — B8X? + BS — X% + B2X? + X8B? = 0.

Let o 3
A= g1/ X (=¢°)
X(=a)x(=¢°)
Then, from Entry 12(vi) of Chapter 17 [4, p. 124], we have

- ay(1 — ) 1/24
(2.13) A= {B2(1 —o —7)2} '

From (2.7) and (2.13), we obtain

Using the above in (2.10) and (2.11), we deduce

(X*A* + X2 - XOAHYM -~ A? =0  and  X? 4+ X*'A* - A2+ 3MXCA% =0.
From the above two identities, we obtain

X846 —6X4A% — ABXO + ASX2 — X2 4+ A%+ X6A% =0.
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Changing ¢ to ¢? in the above, we have
(2.14) V8BS —6Y*B* - B8YS + BSY? — Y2 + B2 +YSB? = 0.
Now on eliminating B, between (2.12) and (2.14), using Maple we obtain
C(X,Y)D(X,Y) = 0.
where
C(X,Y)= XY + X? + XY +6Y2X2 +V3X® + V3 + XY*
and
D(X,Y)=X8Y® Y X7 —8Y4X"+ XY +11X°VC +11V3 X6 + X°y® —44Y5 X5
+11X°Y? - 8X4Y 7T +86Y4X* — 8X1Y + 11YOX? — 44Y3 X3 + X3 + 11Y5X?
+1Y2X? 4+ XY - 8XY* - XY + V3.

By examining the behavour of C'(X,Y’) near ¢ = 0, it can be seen that there is
a neighbourhood about the origin, where this factor is not zero. Then the second
factor D(X,Y) = 0 in this neighbourhood. Hence by the identity theorem, we have

D(X,Y) = 0.
On dividing the above throughout by (XY)%, we obtain the result. O
Theorem 2.3. If

an = 2/3M
x(9)x(¢*?) ¢ Yia x(a2)x (%)

then

(3)+ () [+ g+ o+ o] ()4 () )

(2.15)

5 1 ) 1 1 | s 1
= (XY) +(XT)3—5 (XY) +m 10 (XY + o ) +4 (X2 4 5 + Y2+ o5 ) - 20,

Proof. Let
B qg/sx(—qﬁ)x(—qlo).
X(=¢*)x(=¢*)
By Entry 12(v) and (vii) of Chapter 17 [4, p. 124], we have
(2.16)

_ {ad(l—a)(1 -5 _ {21 -pa -\
X‘{ B } and B‘{ﬁwl—a)(l—a)}
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where «, 3, v and § are of the first, third, fifth and fifteenth degrees respectively.
From (2.16), we deduce that

From Entry 11(viii) and (ix) of Chapter 20 [4, p. 383-397], we have

e (5) (=0=0) - (=) -
and
ew () (=0=) - (=) -

Employing (2.17) in (2.18) and (2.19), we obtain
M(XB*>+X?-X°B)—B=0 and X?+B?X - B+ MBX®=0,

where M = \/m/m’/. Which implies

(2.20) 4X?B* + X3 - X*B+XB* - X*B*-B*-BX =0.

Let 5 5
Ao 13XECIX(=0)

X(=a)x(=q"?)
Then, by employing Entry 12(vi) of Chapter 17 [4, p. 124] and (2.16) we deduce

et (1-—a)1-0)\"" Xx as\ /8
lhag) =a = (3) =2

Using these in (2.18) and (2.19), upon simplifying the resulting identities, and then
replacing g by ¢2, we obtain

(2.21) AB’Y?4+Y - BY?* + B'Y?® - B%Y*-BY -B=0.

Eliminating B from (2.20) and (2.21), using Maple we obtain
C(X,Y)D(X,Y) =0.

where

CX,)Y)=X"Y + X’ + XY +4Y2X? + V3X°? + V3 4+ XY*

and

D(X,Y)=X8Y5 - XTY7" —4X"Y* + XY +5X%V6 + X6y3 + X°y? 4+ X°Y®
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—10Y° X5 —4X*%Y 7 +20X4YV* —4X*Y + X3YS —10Y3 X3 + X3 + X2Y°
+5Y2X2 4+ XY7 —4XY* - XY 4+ Y3

It is same as discussed in Theorem 2.2, that C'(X,Y) # 0 near ¢ = 0 whereas
D(X,Y) = 0 in some neighbourhood ¢ = 0. Hence by identity theorem, we have

D(X,Y) =0.
Finally, on dividing the above throughout by (XY)?%, we obtain the result. O
Theorem 2.4. If
xo= g Xaxa) oy s X(@x(@)
x(a*)x(¢?") x(2°)x(¢*?)

then

P12+ 14p11 + 22910 + 1328po + 1635ps — 15550p7 — 8529ps — 177572ps — 37641p, +
764070p; + 2368728ps + 4125694p; — 2(2q23 + 24¢21 + 15819 + 58617 + 66315 +
13509q15 + 4316941, + 3680199 — 14490¢s — 612613¢5 — 12597393 — 174254541 )13 —
2(2g21 — 6q19 + 51q17 + 208¢15 — 111g13 — 2275g11 — 8880¢g9 — 22598¢g7 — 43267¢5 +
65339¢3 — 79989¢1 )79 — 2(q15 + 2q13 + 4q11 + 20q9 + 78q7 + 88¢s5 + 38q3 + 155¢1 )15 +
(6p11 +60p10 -+ 162pg — 560ps — 5129p7 — 11254pg + 10488ps + 1267264 +406080p; +
828738ps + 1238441p; + 1410116)s3 + (p1o — 10pg + 11ps + 60py + 218p5 + 896ps +
2022p,4 + 3816ps + T277ps + 111558p1 + 13838)s6 + (ps — 2pa — 3ps + 8ps + 2p1 —
12)s9 4+ 4907562 = 0.

where
1 1
2.22 n = (XY)" + ——r n = (XY n/2 —_
@2 = (XY g 4= (XY
=y x) o T \y xX)
Proof. Let

B . XX

X(=¢®)x(=q*)
Then from Entry 12 (v) and (vii) of Chapter 17 [4, p. 124], we have
(2.23)
B5(1 - B)(1—6) |/ B25%(1 — a)(1— )/
X = and B = 5 5 .
ay(l—a)(l—7) a?y%(1 - B)(1-9)
where a, 8,y and 0 are of the degrees 1, 3, 7 and 21 respectively. From (2.23), we
deduce that
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From Entry 13 of Chapter 20 [4, p. 400-403], we have

()" (=) (B

) el
(2.25) B6(1—B)(1 —9) 1/8 35 1/8 (1— B)1— &) 18 |
2<a7 —04)1—7) {1+<Cw> +<(1_a)( _’y)> }mm
and
()" () - G
(2.26)

ay(1— )1 —7)\"* oy \"* (A=) -\ _ 9
(Gsay) (5 (S5es) [
Employing (2.24) in (2.25) and (2.26), we obtain
X?B* + X* + B2X% - 2BX*(B+ XB? + X?) - B*M =0

and
(X?B*+ X*+ B* - 2BX(BX?+ X + B*))M - 9B*X% = 0.

where M = mm/, which implies

X%+ BS+6B*X*+ X8B%2 —2X"B+ X?B® + X0B% —ox*B7

(2.27) +B%2X? - 2B*X - 2B*X" - 2BX* - 2B"X =0.
Let .
273 X(=@)x(—¢")
x(=¢*)x(=¢*")
From Entry 12 (vi) of Chapter 17 [4, p. 124] and (2.23), we deduce that
B _ 1/8 1/8
{ _ (1-p)1 75) and AX? = @ .
A (I—a)(1=9) ay

Employing these in (2.25) and (2.26) up on simplifying, the resulting identities
and then replacing g by ¢2, we obtain

A:=q

B?Y® 4+ B? —2BY + B8 % + B%Y® —2B"Y" + B%Y? — 2B%Y

(2.28) —2BYY" —2B"Y* - 2BY* + Y2 +6B'Y* = 0.
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On eliminating B between (2.27) and (2.28), using Maple we obtain
C(X,Y)D(X,Y)E(X,Y) = 0.
where
C(X,Y)=X°® —2x'y" + X?y® —2XV" —2X"Y —2X'Y + Y® + v?X?
+X2Y? ey Xt —2vtxX —2v*XT 4+ X©,
D(X,Y)=Y®4+256X°Y° +38X*Y" +2X%Y® —2X'Y +2Y2 X% + X?Y? 4+ 209y X!
2V X +38Y X7 —16XMY° +66X°YT +14X8Y° — 10XV —20X3Y 2 — 10Xy
+XMY? L 7aXTY T —20v XY — 35X Y0 4 66Y7 X% — 16X°YM — 35X 10y 4+ xO0y1C
—2x%Y 35 X0V 12 —aXTY P 4+ 66XTY0 +2X8Y M 4 14X8Y M +466X°Y® +38X°Y 12
+72X°%Y° + 256 X0V 0 12X Yy 4 14X Y® — 2xX Py 429 x 12y ! 4 38X 12y
—35X12Y6 _ 14X10Y13 _ 2X15y6 _ 2X13Y13 _ 14X13Y10 _ 4X13Y7 —|—X14Y14 + 2X14Y8
—2 X1y 12 4 0y 10 L 4 xPY® 4x3Y? vy MX? — 22XV —2v X' — 16XV 4+ X©
—2X%Y3 20X 1Y +66X°YO—16Y2 X1 14XV 3 20Y3 X2 _4y3 x°+12X°Y°—14X3YS.
and E(X,Y) is as in (2.22).
As discussed in Theorem 2.2, by examining the behaviour of C(X,Y) and
D(X,Y) near ¢ = 0, it can be seen that there is a neighbourhood about the origin,
where these factors are not zero. Then the third factor E(X,Y) = 0 in this neigh-

bourhood. Hence by identity theorem, we have E(X,Y) = 0. Finally, on dividing
E(X,Y) throughout by (PQ)'® and then simplifying we have the result. O

Acknowledgement. The author would like to thank the anonymous referee for
his/her valuable suggestions.
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