KYUNGPOOK Math. J. 56(2016), 683-714 http://dx.doi.org/10.5666/KMJ.2016.56.3.683 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

When the Comaximal Graph of a Lattice is Toroidal

MOJGAN AFKHAMI Department of Mathematics, University of Neyshabur, P. O. Box 91136-899, Neyshabur, Iran e-mail: mojgan.afkhami@yahoo.com

KHADIJEH AHMAD JAVAHERI AND KAZEM KHASHYARMANESH* Department of Pure Mathematics, Internatinal Compus of Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran e-mail: javaheri1158kh@yahoo.com and khashyar@ipm.ir

ABSTRACT. In this paper we investigate the toroidality of the comaximal graph of a finite lattice.

1. Introduction

The comaximal graph of a commutative ring R was first defined in [9]. Also, in [6] and [10], the authors studied several properties of the comaximal graph. Recently, in [1], the comaximal graph of a lattice was defined and studied.

The comaximal graph of a lattice $L = (L, \land, \lor)$, denoted by $\Gamma(L)$, is an undirected graph with all elements of L being the vertices, and two distinct vertices aand b are adjacent if and only if $a \lor b = 1$. In this paper, we study the finite lattices L with toroidal comaximal graphs.

First we recall some definitions and notation on lattices and graphs.

Recall that a *lattice* is an algebra $L = (L, \wedge, \vee)$ satisfying the following conditions: for all $a, b, c \in L$,

- 1. $a \wedge a = a, a \vee a = a$,
- 2. $a \wedge b = b \wedge a, \ a \vee b = b \vee a,$
- 3. $(a \wedge b) \wedge c = a \wedge (b \wedge c), a \vee (b \vee c) = (a \vee b) \vee c$, and
- 4. $a \lor (a \land b) = a \land (a \lor b) = a$.

* Corresponding Author.

Received September 17, 2013; accepted April 11, 2014.

2010 Mathematics Subject Classification: 05C10, 06A07, 06B10.

Key words and phrases: Lattice, Comaximal graph, Toroidal graph.

Note that in every lattice the equality $a \wedge b = a$ always implies that $a \vee b = b$. Also, by [7, Theorem 2.1], one can define an order \leq on L as follows: For any $a, b \in L$, we set $a \leq b$ if and only if $a \wedge b = a$. Then (L, \leq) is an ordered set in which every pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.). Conversely, let L be an ordered set such that, for every pair $a, b \in L$, g.l.b. $(a, b), l.u.b.(a, b) \in L$. For each a and b in L, we define $a \wedge b := g.l.b.(a, b)$ and $a \vee b := l.u.b.(a, b)$. Then (L, \wedge, \vee) is a lattice. A lattice L is said to be *bounded* if there are elements 0 and 1 in L such that $0 \wedge a = 0$ and $a \vee 1 = 1$, for all $a \in L$.

Clearly, every finite lattice is bounded. Recall that in a partially ordered set (P, \leq) , we say that a covers b or b is covered by a, in notation $b \prec a$, if and only if b < a and there is no element p in P such that b . An element a in L is called a*co-atom* $if <math>a \prec 1$. We denote the sets of all co-atoms in a lattice L by C(L). Also, for an element $a \in L$, we set $[a]^l = \{b \in L \mid b \leq a\}$.

In a graph G, for two distinct vertices a and b in G, the notation a - b means that a and b are adjacent. For a positive integer r, an r-partite graph is one whose vertex-set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m,n}$. A graph G is said to be contracted to a graph H if there exists a sequence of elementary contractions which transforms G into H, where an elementary contraction consists of deletion of a vertex or an edge or the identification of two adjacent vertices. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_5 or $K_{3,3}$ (cf. [2, p.153]).

By a surface we mean a connected compact 2-dimensional manifold without boundary, that is a topological space such that each point has a neiborhood homeomorphic to the open disc. It is well-known that every oriented compact surface is homeomorphic to a sphere with g handles. This number g is a called *the genus* of the surface. The torus can be though of as a sphere with one handle. This means that the genus of torus is 1.

The canonical representation of a torus

A graph G is embeddable in a surface S if the vertices of G are assigned to distinct points in S such that every edge of G is a simple arc in S connecting the two vertices which are joined in G. If G can not be embedded in S, then G has at least two edges intersecting at a point which is not a vertex of G. We say a graph G is *irreducible* for a surface S if G does not embed in S, but any proper subgraph of G embeds in S. A toroidal graph is a graph that can be embedded in a torus. Note that the genus of a planar graph is zero. So the planar graph is not considered as a toroidal graph. Also, a complete graph K_n is toroidal if n = 5, 6 or 7, and the only toroidal complete bipartite graphs are $K_{4,4}$ and $K_{3,n}$, with n = 3, 4, 5, 6 (see [3] or [8]).

2. Toroidal Ccomaximal Graph of a Lattice

In this paper, we assume that L is a finite lattice. The comaximal graph of a lattice L, denoted by $\Gamma(L)$, is an undirected graph with all elements of L being the vertices, and two distinct vertices a and b are adjacent if and only if $a \vee b = 1$ (see [1]). We denote the induced subgraph of $\Gamma(L)$ with vertex set $L \setminus (J(L) \cup \{1\})$, by $\Gamma_2(L)$, where J(L) is the set $\bigcap_{m \in C(L)} [m]^l$. It is easy to see that the vertex 1 is adjacent to all vertices, also the vertices in J(L) are isolated vertices in the induced subgraph with vertex set $L \setminus \{1\}$.

In this paper, we explore the toroidality of the graph $\Gamma_2(L)$. Clearly, by [1], if $\Gamma_2(L)$ is planar, then $|C(L)| \leq 4$. As |C(L)| = 1, then the graph $\Gamma_2(L)$ is an empty graph. Note that when |C(L)| = 2, we have that $\Gamma_2(L)$ is a complete bipartite graph. So $\Gamma_2(L)$ is planar if and only if either $|[m_1]^l \setminus [m_2]^l| \leq 2$ or $|[m_2]^l \setminus [m_1]^l| \leq 2$, where $C(L) = \{m_1, m_2\}$. Also, one can easily see that $\Gamma_2(L)$ is toroidal if and only if either $|[m_1]^l \setminus [m_2]^l| = 3$ and $|[m_2]^l \setminus [m_1]^l| \in \{3, 4, 5, 6\}$, where $C(L) = \{m_1, m_2\}$. We begin this section by the following lemma.

Lemma 2.1. If $\Gamma_2(L)$ is toroidal, then the size of C(L) is at most seven.

Proof. Assume to the contrary that $|C(L)| \ge 8$. Then the induced subgraph of $\Gamma_2(L)$ with vertex set C(L) is isomorphic to K_8 , which is a contradiction. \Box

By Lemma 2.1., it is sufficient to study the toroidality of the graph $\Gamma_2(L)$ in the cases that C(L) has 3, 4, 5, 6 or 7 elements. In this paper, we discuss on the case that |C(L)| = 4. First we begin by the following notation.

Notation. Suppose that |C(L)| = n, where n > 1. To simplify notation, for $1 \le i \le n$, we denote the set $[m_i]^l$, where $m_i \in C(L)$, by \mathfrak{m}_i . We set $S_t := \mathfrak{m}_t \setminus \bigcup_{i \notin \{t\}} \mathfrak{m}_i$, where $1 \le i, t \le n$. Also, $S_{t_1t_2...t_k} := (\mathfrak{m}_{t_1} \cap \mathfrak{m}_{t_2} \cap \cdots \cap \mathfrak{m}_{t_k}) \setminus \bigcup_{i \notin \{t_1, t_2, ..., t_k\}} \mathfrak{m}_i$, where $1 \le t_1 < t_2 < \cdots < t_k \le n$. Note that each element in S_i is adjacent to all elements of S_j , for $1 \le i \ne j \le n$, and also it is adjacent to all elements of $S_{t_1t_2...t_k}$, where $t_1, \ldots, t_k \notin \{i\}$.

Now, suppose that $|\bigcup_{t=1}^{4} S_t| \ge 10$. Then it is easy to find a subgraph isomorphic to $K_{3,7}$ in the contraction of $\Gamma_2(L)$, and so it is not toroidal. Hence we have the

following lemma.

Lemma 2.2. If $\Gamma_2(L)$ is toroidal, then $|\bigcup_{t=1}^4 S_t| \leq 9$.

In this section, we study the toroidality of the graph $\Gamma_2(L)$, whenever $5 \leq |\bigcup_{t=1}^4 S_t| \leq 9$.

Lemma 2.3. Suppose that $|\bigcup_{t=1}^{4} S_t| = 5$, $|S_1| = 2$ and $\Gamma_2(L)$ is a toroidal graph. Then one of the following conditions holds:

- (i) $|S_{1i_1}| = 3$, for some unique $i_1 \in \{2, 3, 4\}$ and $|S_{i_2i_3}| = 1$, $S_{i_1i_2i_3} = S_{i_1i_2} = S_{i_1i_3} = \emptyset$, for $i_2, i_3 \notin \{1, i_1\}$.
- (ii) $|S_{1i_1}| = 2$, for some unique $i_1 \in \{2, 3, 4\}$ and $|S_{i_2i_3}| = 1$, for all $i_2, i_3 \notin \{1\}$, and also $S_{1i_4} = \emptyset$, for all $i_4 \notin \{1, i_1\}$.
- (iii) $|S_{1i_1}| = 2$, for some unique $i_1 \notin \{1\}$ and $|S_{i_1i_2}| = |S_{i_2i_3}| = 1$, $|S_{1i_2}| \ge 0$, $S_{1i_3} = S_{i_1i_3} = \emptyset$, for some unique $i_2, i_3 \in \{2, 3, 4\} \setminus \{i_1\}$.
- (iv) $|S_{1i_1}| = |S_{i_1i_2}| = |S_{i_1i_3}| = 1$, $|S_{i_2i_3}| = 2$, and $S_{1i_2} = S_{1i_3} = \emptyset$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$.
- (v) $|S_{1i_1}| = |S_{i_2i_3}| = 1$, $|S_{i_1i_2}| = |S_{i_1i_3}| = 2$, and $S_{1i_2} = S_{1i_3} = \emptyset$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$.
- (vi) $|S_{1i_1}| = |S_{1i_2}| = 1$, $S_{1i_3} = \emptyset$ and $|S_{i_1i_2}| = |S_{i_1i_3}| = |S_{i_2i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$.
- (vii) $|S_{i_1i_2}| = 2$ and $S_{1i_1} = \emptyset$, for all $i_1, i_2 \notin \{1\}$.
- (viii) $|S_{i_1i_2}| = 3$, $|S_{i_2i_3}| = 2$, $|S_{i_1i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$ and $S_{1i_1} = \emptyset$, for all $i_1 \notin \{1\}$.
- (ix) $|S_{i_1i_2}| = 4$, $|S_{i_1i_3}| = |S_{i_2i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$ and $S_{1i_1} = \emptyset$, for all $i_1 \notin \{1\}$.
- (x) $|S_{1i_1}| = |S_{i_2i_3}| = 1$ and $S_{i_1i_2i_3} = \emptyset$, for all $i_1, i_2, i_3 \notin \{1\}$.
- (xi) $S_{i_1i_2} = \emptyset$, $|S_{1i_1}| \ge 0$, $|S_{i_1i_2i_3}| \ge 0$, for all $i_1, i_2 \notin \{1\}$ and for some unique $i_3 \in \{2, 3, 4\}$.

Proof. By our hypothesis, $\Gamma_2(L)$ is toroidal. If S_{234}, S_{23}, S_{24} and S_{34} are empty, then $\Gamma_2(L)$ is planar, which is not toroidal. We know that, if the size of one of the sets S_{23}, S_{24} or S_{34} is at least five, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{3,7}$, which is impossible. So the size of all of the above sets is at most four. We have the following situations.

(i) We assume that $|S_{14}| = 4$ and $|S_{23}| = 1$. Then the contraction of $\Gamma_2(L)$ contains a copy of $K_{3,7}$. So it is not toroidal. Also, if $|S_{14}| = 3$, $|S_{23}| = 1$ and S_{234} has at least one element, then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5] (see Figure i). So $\Gamma_2(L)$ is not toroidal. In

Figure 1, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{14}, s_{14}', s_{14}'' \in S_{14}$ and $s_{23} \in S_{23}$.

Moreover, if $|S_{14}| = 3$, $|S_{23}| = |S_{34}| = 1$, then $\Gamma_2(L)$ contains E6, 2, one of the listed graphs in [11] (see Figure 2). Hence it is not toroidal. In Figure 2, $a_1, a_2 \in S_1, b \in S_2, c \in S_3, d \in S_4, s_{14}, s'_{14}, s''_{14} \in S_{14}, s_{23} \in S_{23}$ and $s_{34} \in S_{34}$. In addition, if $|S_{14}| = |S_{23}| = 2$, then the contraction of $\Gamma_2(L)$ contains a copy

Figure 2

of $K_{4,5}$. So it is not toroidal. Thus, we may assume that $|S_{14}| = 3$, $|S_{23}| = 1$, $S_{24} = S_{34} = S_{234} = \emptyset$. In this situation, the complement of $\Gamma_2(L)$ contains C415, one of the listed graphs in [5] (see Figure 3). So it is toroidal. In Figure 3, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{14}, s'_{14}, s''_{14} \in S_{14}$ and $s_{23} \in S_{23}$.

(ii) If $|S_{14}| = |S_{34}| = 2$ and $|S_{23}| = 1$, then the graph $\Gamma_2(L)$ contains E6, 2, 2

one of the listed graphs in [11]. So it is not toroidal. Also, if $|S_{14}| = 2$ and $|S_{13}| = |S_{23}| = |S_{24}| = 1$, then the graph $\Gamma_2(L)$ contains G_3 , one of the listed graphs in [11] (see Figure 4). Hence it is not toroidal. In Figure ii, $a_1, a_2 \in S_1$, $b \in S_2, c \in S_3, d \in S_4, s_{13} \in S_{13}, s_{14}, s'_{14} \in S_{14}, s_{23} \in S_{23}$ and $s_{24} \in S_{24}$.

Figure 4

We may assume that $|S_{14}| = 2$, $|S_{23}| = |S_{24}| = |S_{34}| = 1$ and $S_{12} = S_{13} = \emptyset$. Then the graph $\Gamma_2(L)$, which is pictured in Figure 5, is toroidal. In Figure 5, we have $a_1, a_2 \in S_1, b \in S_2, c \in S_3, d \in S_4, s_{14}, s'_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}$ and $s_{34} \in S_{34}$.

- (iii) In view of the previous situations, we may assume that $|S_{14}| = 2$, $|S_{23}| = |S_{34}| = 1$, $|S_{13}| \ge 0$ and $S_{12} = S_{24} = \emptyset$. In this case, the graph $\Gamma_2(L)$, in Figure 6, is toroidal. In Figure 6, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{13} \in S_{13}$, $s_{14}, s'_{14} \in S_{14}$, $s_{23} \in S_{23}$ and $s_{34} \in S_{34}$.
- (iv) If $|S_{23}| = 3$ and $|S_{14}| = 1$, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$, and so it is not toroidal. On the other hand, if $|S_{23}| = 2$ and $|S_{24}| = |S_{13}| = |S_{14}| = 1$, then the graph $\Gamma_2(L)$ contains G_3 , one of the listed graphs in [11]. Hence it is not toroidal. Also, if $|S_{23}| = |S_{34}| = 2$ and $|S_{14}| = 1$, then

 $\Gamma_2(L)$ contains G_3 , one of the listed graphs in [11]. Hence it is not toroidal. Therefore we may assume that $|S_{23}| = 2$, $|S_{14}| = |S_{24}| = |S_{34}| = 1$ and $S_{12} = S_{13} = \emptyset$. Then the graph $\Gamma_2(L)$ is toroidal, which is pictured in Figure 7. In Figure 7, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{14} \in S_{14}$, $s_{23}, s'_{23} \in S_{23}$, $s_{24} \in S_{24}$ and $s_{34} \in S_{34}$.

- (v) In view of the previous situations, we may assume that $|S_{34}| = |S_{24}| = 2$, $|S_{23}| = |S_{14}| = 1$ and $S_{12} = S_{13} = \emptyset$. In this case, the graph $\Gamma_2(L)$, which is pictured in Figure 8, is toroidal. In Figure 8, we have $a_1, a_2 \in S_1, b \in S_2$, $c \in S_3, d \in S_4, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24}, s'_{24} \in S_{24}$ and $s_{34}, s'_{34} \in S_{34}$.
- (vi) If $|S_{13}| = |S_{14}| = |S_{23}| = |S_{24}| = 1$ and $|S_{34}| = 2$, then the complement of the contraction of $\Gamma_2(L)$ is contained in V6.5, one of the listed graphs in [5] (see Figure 9). So it is not toroidal. In Figure 9, we have $a_1, a_2 \in S_1, b \in S_2, c \in S_3, d \in S_4, s_{13} \in S_{13}, s_{23} \in S_{23}, s_{14} \in S_{14}, s_{24} \in S_{24}$ and $s_{34}, s'_{34} \in S_{34}$. If $|S_{13}| = |S_{14}| = |S_{23}| = |S_{24}| = |S_{34}| = 1$ and $|S_{234}| \ge 0$, then $S_{12} = \emptyset$.

In this situation, the graph $\Gamma_2(L)$, in Figure 10, is toroidal. In Figure 10, $a_1, a_2 \in S_1, b \in S_2, c \in S_3, d \in S_4, s_{13} \in S_{13}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}, s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.

(vii) In view of the previous situations, we may assume that $|S_{23}| = |S_{24}| = |S_{34}| =$

2 and $S_{12} = S_{13} = S_{14} = \emptyset$. In this case, the graph $\Gamma_2(L)$, in Figure 11, is toroidal. In Figure 11, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{23}, s'_{23} \in S_{23}$, $s_{24}, s'_{24} \in S_{24}$ and $s_{34}, s'_{34} \in S_{34}$.

Figure 11

- (viii) If $|S_{34}| = 3$ and $|S_{23}| = |S_{14}| = 1$, then the graph $\Gamma_2(L)$ contains a subgraph isomorphic to E6, 2, one of the listed graphs in [11]. So it is not toroidal. Therefore we may assume that $|S_{34}| = 3$, $|S_{24}| = 2$, $|S_{23}| = 1$ and $S_{12} = S_{13} = S_{14} = \emptyset$. Then the graph $\Gamma_2(L)$ is pictured in Figure 12, is toroidal. In Figure 12, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{23} \in S_{23}$, $s_{24}, s'_{24} \in S_{24}$ and $s_{34}, s''_{34} \in S_{34}$.
- (ix) In view of the previous situations, we may assume that $|S_{34}| = 4$, $|S_{23}| = |S_{24}| = 1$ and $S_{12} = S_{13} = S_{14} = \emptyset$. In this case, the graph $\Gamma_2(L)$, in Figure 13, is toroidal. In Figure 13, $a_1, a_2 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{23} \in S_{23}$, $s_{24} \in S_{24}$ and $s_1, s_2, s_3, s_4 \in S_{34}$.

(x) If $|S_{12}| = |S_{13}| = |S_{14}| = |S_{23}| = |S_{24}| = |S_{34}| = |S_{234}| = 1$, then the complement of the contraction of $\Gamma_2(L)$ is contained in Y7.4, one of the listed graphs in [5] (see Figure 14). Thus it is not toroidal. In Figure 14, $a_1, a_2 \in S_1$, $b \in S_2, c \in S_3, d \in S_4, s_{12} \in S_{12}, s_{13} \in S_{13}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}, s_{34} \in S_{34}$ and $s_{234} \in S_{234}$. We may assume that $|S_{12}| = |S_{13}| = |S_{14}| = |S_{23}| = |S_{24}| = |S_{34}| = 1$ and $S_{234} = \emptyset$. Then the graph $\Gamma_2(L)$, in Figure 15, is toroidal. In Figure 15,

 $S_{234} = \emptyset$. Then the graph $\Gamma_2(L)$, in Figure 15, is toroidal. In Figure 15, $a_1, a_2 \in S_1, b \in S_2, c \in S_3, d \in S_4, s_{12} \in S_{12}, s_{13} \in S_{13}, s_{14} \in S_{14}, s_{23} \in S_{23}$, $s_{24} \in S_{24}$ and $s_{234} \in S_{234}$.

(xi) When $S_{23} = S_{24} = S_{34} = \emptyset$, $|S_{234}| \ge 0$, $|S_{12}| \ge 0$, $|S_{13}| \ge 0$ and $|S_{14}| \ge 0$, the graph $\Gamma_2(L)$ is isomorphic to a subdivision of K_5 , and so it is toroidal. \Box

Remark 2.4. Note that if the size of the set $\bigcup_{t=1}^{4} S_t$ is five, $|S_1| = 2$ and one of the following cases holds, then it is a question that whether $\Gamma_2(L)$ is toroidal or not. Case 1. $|S_{34}| = 3$ and $|S_{23}| = |S_{24}| = 2$.

- Case 2. $|S_{24}| = |S_{34}| = 3$. Case 3. $|S_{24}| = 2$ and $|S_{34}| = 4$.

Now, the next theorem follows immediately from Lemma 2.3 and Remark 2.4.

Theorem 2.5. Suppose that $|\bigcup_{t=1}^{4} S_t| = 5$ and $|S_1| = 2$, and also the cases which are mentioned in Remark 2.4. do not hold. Then $\Gamma_2(L)$ is toroidal if and only if one of the following statements holds:

(i) $|S_{1i_1}| = 3$, for some unique $i_1 \in \{2, 3, 4\}$ and $|S_{i_2i_3}| = 1$, $S_{i_1i_2i_3} = S_{i_1i_2} = S_{i_1i_3} = \emptyset$, for $i_2, i_3 \notin \{1, i_1\}$,

- (ii) $|S_{1i_1}| = 2$, for some unique $i_1 \in \{2, 3, 4\}$ and $|S_{i_2i_3}| = 1$, for all $i_2, i_3 \notin \{1\}$, and also $S_{1i_4} = \emptyset$, for all $i_4 \notin \{1, i_1\}$,
- (iii) $|S_{1i_1}| = 2$, for some unique $i_1 \in \{2, 3, 4\}$, and $|S_{i_1i_2}| = |S_{i_2i_3}| = 1$, $|S_{1i_2}| \ge 0$, $S_{1i_3} = S_{i_1i_3} = \emptyset$, for some unique $i_2, i_3 \notin \{1, i_1\}$,
- (iv) $|S_{1i_1}| = |S_{i_1i_2}| = |S_{i_1i_3}| = 1$, $|S_{i_2i_3}| = 2$, and $S_{1i_2} = S_{1i_3} = \emptyset$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$,
- (v) $|S_{1i_1}| = |S_{i_2i_3}| = 1$, $|S_{i_1i_2}| = |S_{i_1i_3}| = 2$, and $S_{1i_2} = S_{1i_3} = \emptyset$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$,
- (vi) $|S_{1i_1}| = |S_{1i_2}| = 1$, $S_{1i_3} = \emptyset$ and $|S_{i_1i_2}| = |S_{i_1i_3}| = |S_{i_2i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$,
- (vii) $|S_{i_1i_2}| = 2$, and $S_{1i_1} = \emptyset$, for all $i_1, i_2 \notin \{1\}$.
- (viii) $|S_{i_1i_2}| = 3$, $|S_{i_2i_3}| = 2$, $|S_{i_1i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$ and $S_{1i_1} = \emptyset$, for all $i_1 \notin \{1\}$,
- (ix) $|S_{i_1i_2}| = 4$, $|S_{i_1i_3}| = |S_{i_2i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$, and $S_{1i_1} = \emptyset$, for all $i_1 \notin \{1\}$,
- (x) $|S_{1i_1}| = |S_{i_2i_3}| = 1$ and $S_{i_1i_2i_3} = \emptyset$, for all $i_1, i_2, i_3 \notin \{1\}$.
- (xi) $S_{i_1i_2} = \emptyset$, $|S_{1i_1}| \ge 0$ and $|S_{i_1i_2i_3}| \ge 0$, for all $i_1, i_2 \notin \{1\}$ and for some unique $i_3 \in \{2, 3, 4\}$.

Suppose that $|\bigcup_{t=1}^{4} S_t| = 6$. Then either one of the sets S_t 's, $1 \le t \le 4$, say S_1 , has three elements or two of the S_t 's, $1 \le t \le 4$, say S_1 and S_2 , have two elements, exactly.

In the first case, if $|S_{234}| \ge 3$, then the complement of $\Gamma_2(L)$ is isomorphic to U6.6b, one of the listed graphs in [5]. So it is not toroidal.

And if $|S_{234}| = 2$ and $|S_{23}| \ge 1$, then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5]. Thus it is not toroidal.

So we may assume that $|S_{234}| = 2$ and $S_{23} = S_{24} = S_{34} = \emptyset$. Then $\Gamma_2(L)$ contains a subgraph isomorphic to $K_8 \setminus (K_3 \cup K_2)$, which is toroidal (cf. [5, p.55]).

Now, suppose that $|S_{234}| = |S_{23}| = |S_{24}| = 1$. Then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5]. Thus it is not toroidal.

In addition, if $|S_{234}| = 1$ and $|S_{23}| = 2$, then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5]. So it is not toroidal.

Also, if $|S_{234}| = |S_{23}| = 1$ and $|S_{14}| = 2$, then $\Gamma_2(L)$ contains a subgraph isomrphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

Therefore we may assume that $|S_{234}| = |S_{14}| = 1$ and $S_{24} = S_{34} = \emptyset$. Then the complement of $\Gamma_2(L)$ contains C402, one of the listed graphs in [5], which is toroidal (see Figure 16). In Figure 16, we have the vertices $a_1, a_2, a_3 \in S_1, b \in S_2$, $c \in S_3, d \in S_4, s_{14} \in S_{14}, s_{23} \in S_{23}$ and $s_{234} \in S_{234}$.

When $|S_{23}| = 3$, one can easily find a copy of $K_{4,5}$ in the structure of the contraction of $\Gamma_2(L)$. Hence it is not toroidal.

When the Comaximal Graph of a Lattice is Toroidal

Also, if $|S_{14}| = 1$ and $|S_{23}| = 2$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5] (see Figure 17). Thus it is not toroidal. In Figure 17, $a_1, a_2, a_3 \in S_1$, $b \in S_2$, $c \in S_3$, $d \in S_4$, $s_{14} \in S_{14}$ and $s_{23}, s'_{23} \in S_{23}$.

Figure 17

In addition, if $|S_{23}| = 2$ and $|S_{24}| = 1$, then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5]. So it is not toroidal.

Hence we assume that $|S_{23}| = 2$ and $S_{14} = S_{24} = S_{34} = S_{234} = \emptyset$. Then $\Gamma_2(L)$ is contained in $K_8 \setminus (K_3.K_2)$, $(K_3.K_2)$ is the union of K_3 with K_2 such that intersect in one vertex), which is toroidal (cf. [5, p.55]).

Now, suppose that $|S_{14}| = 2$ and $|S_{23}| = |S_{24}| = 1$. Then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

If $|S_{14}| = 3$ and $|S_{23}| = 1$, then one can find a copy of $K_{3,7}$ in the contraction of $\Gamma_2(L)$. So it is not toroidal.

Also, if $|S_{14}| = |S_{23}| = 2$, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$. Hence it is not toroidal.

So we may assume that $|S_{14}| = 2$, $|S_{23}| = 1$ and $S_{234} = S_{24} = S_{34} = \emptyset$. Then the complement of $\Gamma_2(L)$ contains C603, one of the listed graphs in [5]. Thus it is toroidal. To do this, in Figure 18, consider the vertices $a_1, a_2 \in S_1, b \in S_2, c \in S_3, d \in S_4, s_{14}, s'_{14} \in S_{14}$ and $s_{23} \in S_{23}$.

Figure 18

If $|S_{23}| = |S_{24}| = |S_{34}| = 1$, then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5]. So it is not toroidal.

Also, if $|S_{13}| = |S_{14}| = |S_{23}| = |S_{24}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

Therefore we may assume that $|S_{12}| = |S_{23}| = |S_{34}| = 1$ and $S_{234} = S_{14} = S_{24} = \emptyset$. Then the complement of $\Gamma_2(L)$ contains C402, one of the listed graphs in [5]. So it is toroidal.

In the second case, when $|S_1| = |S_2| = 2$, if S_{34} has at least three elements, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$. Hence it is not toroidal.

Also, if $|S_{34}| = 2$ and $|S_{12}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5]. So it is not toroidal.

Moreover, if $|S_{34}| = |S_{24}| = 2$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if $|S_{34}| = 2$ and $|S_{14}| = |S_{23}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

We may assume that $|S_{34}| = 2$, $|S_{23}| = |S_{24}| = 1$, $|S_{134} \ge 0|$, $|S_{234}| \ge 0$ and $S_{12} = S_{13} = S_{14} = \emptyset$. Then $\Gamma_2(L)$ is toroidal, since in Figure 19, we have the vertices $a_1, a_2 \in S_1, b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{23} \in S_{23}, s_{24} \in S_{24}, s_{34}, s'_{34} \in S_{34}, s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Also, we may assume that $|S_{34}| = 2$, $|S_{13}| = |S_{23}| = 1$, $S_{12} = S_{14} = S_{24} = \emptyset$, $|S_{134}| \ge 0$ and $|S_{234}| \ge 0$. Then $\Gamma_2(L)$ is toroidal, since in Figure 20, we have the vertices $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{13} \in S_{13}$, $s_{23} \in S_{23}$, $s_{34}, s'_{34} \in S_{34}$, $s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Now, suppose that $|S_{134}| = |S_{14}| = |S_{23}| = |S_{24}| = |S_{34}| = 1$. Then the complement of the contraction of $\Gamma_2(L)$ is contained in W6.6a, one of the listed graphs in [5] (see Figure 21). So it is not toroidal. In Figure 21, we have $a_1, a_2 \in S_1$,

 $b_1, b_2 \in S_2, \ c \in S_3, \ d \in S_4, \ s_{14} \in S_{14}, \ s_{23} \in S_{23}, \ s_{24} \in S_{24}, \ s_{34} \in S_{34}$ and $s_{134} \in S_{134}.$

Now, if $|S_{13}| = |S_{14}| = |S_{23}| = |S_{24}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if $|S_{12}| = |S_{14}| = |S_{23}| = |S_{34}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

Whenever $|S_{13}| = |S_{23}| = |S_{24}| = 1$ and $S_{34} = S_{14} = \emptyset$, the complement of $\Gamma_2(L)$ contains a subgraph isomorphic to C416, one of the listed graphs in [5] (see Fugure 22). Thus it is toroidal. In Figure 22, $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{13} \in S_{13}$, $s_{23} \in S_{23}$ and $s_{24} \in S_{24}$.

So we may assume that $|S_{14}| = |S_{23}| = |S_{24}| = |S_{34}| = 1, |S_{234}| \ge 0$ and

Figure 22

 $S_{12} = S_{13} = S_{134} = \emptyset$. Then $\Gamma_2(L)$ is toroidal, since in Figure 23, we have the vertices $a_1, a_2 \in S_1, b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}, s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.

Consider $|S_{24}| = 3$ and $|S_{34}| = 1$. Since $\Gamma_2(L)$ contains E6, 2, one of the listed graphs in [11], it is not toroidal.

When $|S_{24}| = 2$ and $|S_{12}| = |S_{34}| = 1$, $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

Now, we may assume that $|S_{23}| = |S_{24}| = 2$, $|S_{34}| = 1$, $|S_{234}| \ge 0$ and $S_{12} = S_{13} = S_{14} = S_{134} = \emptyset$. Then $\Gamma_2(L)$ is toroidal, since in Figure 24, we have $a_1, a_2 \in S_1, b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{23}, s'_{23} \in S_{23}, s_{24}, s'_{24} \in S_{24}, s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.

If $|S_{14}| = 1$ and $|S_{23}| = 2$, then the complement of $\Gamma_2(L)$ is contained in S5.5,

one of the listed graphs in [5]. So it is not toroidal.

We may assume that $|S_{23}| = |S_{24}| = 2$, $|S_{12}| \ge 0$, $|S_{134}| \ge 0$, $|S_{234}| \ge 0$ and $S_{13} = S_{14} = S_{34} = \emptyset$. Then $\Gamma_2(L)$ is toroidal. To do this, in Figure 25, consider the vertices $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{12} \in S_{12}$, $s_{23}, s'_{23} \in S_{23}$, $s_{24}, s'_{24} \in S_{24}$, $s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

As $|S_{24}| \ge 4$, the contraction of $\Gamma_2(L)$ contains a copy of $K_{3,7}$. Hence it is not toroidal.

If $|S_{24}| = 3$ and $|S_{14}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to E6, 2, one of the listed graphs in [11]. So it is not toroidal.

If $|S_{24}| = 3$ and $|S_{23}| = |S_{134}| = 1$, then the complement of the contraction of $\Gamma_2(L)$ contains U6.6b, one of the listed graphs in [5]. So it is not toroidal.

Now, consider $|S_{24}| = 3$, $|S_{23}| = 1$, $S_{13} = S_{14} = S_{34} = S_{134} = \emptyset$, $|S_{12}| \ge 0$

Figure 25

and $|S_{234}| \ge 0$. Then the graph $\Gamma_2(L)$, in Figure 26, is toroidal. In Figure 26, $a_1, a_2 \in S_1, b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{12} \in S_{12}, s_{23} \in S_{23}, s_{24}, s_{24}' \in S_{24}$ and $s_{234} \in S_{234}$.

Figure 26

If $|S_{12}| = 2$ and $|S_{23}| = |S_{34}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if $|S_{12}| = 2$ and $|S_{34}| = |S_{234}| = 1$, then the complement of the contraction of $\Gamma_2(L)$ contains V6.5, one of the listed graphs in [5]. So it is not toroidal.

If $|S_{12}| = 3$ and $|S_{34}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to E6, 2, one of the listed graphs in [11]. So it is not toroidal.

Now, we may assume that $|S_{12}| = 2$, $|S_{34}| = 1$ and $S_{134} = S_{234} = S_{13} = S_{14} =$

 $S_{23} = S_{24} = \emptyset$. Then the complement of $\Gamma_2(L)$ contains C610, one of the listed graphs in [5]. So it is toroidal, since in Figure 27, we have the vertices $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{12}, s'_{12} \in S_{12}$ and $s_{34} \in S_{34}$.

If $|S_{24}| = 2$ and $|S_{14}| = |S_{23}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11]. Hence it is not toroidal.

If $|S_{14}| = |S_{24}| = 2$, then $\Gamma_2(L)$ contains a subgraph isomorphic to E6, 2, one of the listed graphs in [11]. So it is not toroidal.

Suppose that $|S_{24}| = 2$, $|S_{14}| = |S_{34}| = 1$, $S_{12} = S_{13} = S_{23} = \emptyset$, $|S_{134}| \ge 0$ and $|S_{234}| \ge 0$. Then the graph $\Gamma_2(L)$, in Figure 28, is toroidal. In Figure 28, we have the vertices $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{14} \in S_{14}$, $s_{24}, s'_{24} \in S_{24}$, $s_{34} \in S_{34}$, $s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Moreover, if $|S_{12}| = |S_{13}| = |S_{23}| = |S_{34}| = 1$, $S_{14} = S_{24} = \emptyset$, $|S_{134}| \ge 0$ and $|S_{234}| \ge 0$, then the graph $\Gamma_2(L)$ is toroidal, which is pictured in Figure 29. In Figure 29, $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{12} \in S_{12}$, $s_{13} \in S_{13}$, $s_{23} \in S_{23}$, $s_{34} \in S_{34}$, $s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Figure 29

Also, if $|S_{12}| = |S_{23}| = |S_{24}| = |S_{34}| = 1$, $S_{13} = S_{14} = \emptyset$, $|S_{134}| \ge 0$ and $|S_{234}| \ge 0$, then the graph $\Gamma_2(L)$ is toroidal, which is pictured in Figure 30. In Figure 30, $a_1, a_2 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{12} \in S_{12}$, $s_{23} \in S_{23}$, $s_{24} \in S_{24}$, and $s_{34} \in S_{34}$.

Now, from the above discussion, we state some necessary and sufficient conditions for the toroidality of $\Gamma_2(L)$ in the next two theorems.

Theorem 2.6. Suppose that $|\bigcup_{t=1}^{4} S_t| = 6$ and $|S_1| = 3$. Then $\Gamma_2(L)$ is toroidal if and only if one of the following statements holds:

(i) If
$$|S_{i_1i_2i_3}| = 2$$
, then $S_{i_1i_2} = \emptyset$, for all $i_1, i_2, i_3 \notin \{1\}$,

- (ii) If $|S_{1i_1}| = 1$, for some unique $i_1 \in \{2,3,4\}$, then $|S_{i_2i_3}| = 1$, for $\{i_2,i_3\} = \{2,3,4\} \setminus \{i_1\}$ and $S_{i_1i_4} = \emptyset$, for all $i_4 \in \{i_2,i_3\}$, and also $|S_{i_1i_2i_3}| = 1$,
- (iii) If $|S_{i_1i_2}| = 2$, for some unique $i_1, i_2 \in \{2, 3, 4\}$, then $S_{i_3i_4} = \emptyset$, for all $i_3 \notin \{1, i_1, i_2\}$, $i_4 \in \{1, i_1, i_2\}$ and $S_{i_1i_2i_3} = \emptyset$,
- (iv) If $|S_{1i_1}| = 2$, for some unique $i_1 \in \{2,3,4\}$, then $|S_{i_2i_3}| = 1$, for $\{i_2, i_3\} = \{2,3,4\} \setminus \{i_1\}$ and $S_{i_1i_4} = \emptyset$, for all $i_4 \in \{i_2, i_3\}$, and also $S_{i_1i_2i_3} = \emptyset$,
- (v) If $|S_{1i_1}| = 1$, for some unique $i_1 \in \{2, 3, 4\}$, then $|S_{i_2i_3}| = 1$, for $\{i_2, i_3\} = \{2, 3, 4\} \setminus \{i_1\}$ and $|S_{i_1i_4}| = 1$, for some unique $i_4 \in \{i_2, i_3\}$, and also $S_{1i_5} = S_{i_1i_5} = \emptyset$, for some unique $i_5 \in \{i_2, i_3\} \setminus \{i_4\}$ and $S_{i_1i_2i_3} = \emptyset$.

Remark 2.7. Note that if $\bigcup_{t=1}^{4} S_t$ has six elements, $|S_1| = |S_2| = 2$ and one of the following cases holds, then it is a question that whether $\Gamma_2(L)$ is toroidal or not. Case 1. $|S_{23}| = 2$ and $|S_{24}| = 3$.

Case 2. $|S_{23}| = |S_{24}| = 2$ and $|S_{34}| = |S_{134}| = 1$.

Theorem 2.8. Suppose that $|\bigcup_{t=1}^{4} S_t| = 6$ and $|S_1| = |S_2| = 2$, and also the cases which are mentioned in remark 2.7. do not hold. Then $\Gamma_2(L)$ is toroidal if and only if one of the following statements holds:

- (i) $S_{12} = \emptyset$ and $|S_{i_1i_2}| = 2$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_1i_3}| = |S_{i_2i_3}| = 1$, for some unique $i_3 \in \{1, 2\}$, then $S_{i_1i_4} = S_{i_2i_4} = \emptyset$, for $i_4 \in \{1, 2\} \setminus \{i_3\}$,
- (ii) $S_{12} = \emptyset$ and $|S_{i_1i_2}| = 2$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{1i_3}| = |S_{2i_3}| = 1$, for some unique $i_3 \in \{3, 4\}$, then $S_{1i_4} = S_{2i_4} = \emptyset$, for $i_4 \notin \{1, 2, i_3\}$,
- (iii) $S_{i_1i_2} = \emptyset$, for $i_1, i_2 \notin \{1, 2\}$ and $|S_{i_3i_4}| = 1$, for some unique $i_3 \in \{1, 2\}$ and for all $i_4 \in \{i_1, i_2\}$. Also, if $|S_{i_4i_5}| = 1$, for some unique $i_4 \in \{i_1, i_2\}$ and for $i_5 \in \{1, 2\} \setminus \{i_3\}$, then $S_{i_5i_6} = \emptyset$, for $i_6 \in \{i_1, i_2\} \setminus \{i_4\}$,
- (iv) $S_{12} = \emptyset$, $|S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$ and $|S_{i_3i_4}| = 1$, for some unique $i_3 \in \{1, 2\}$, for all $i_4 \in \{i_1, i_2\}$. Also, if $|S_{i_4i_5}| = 1$, for some unique $i_4 \in \{i_1, i_2\}$, for $i_5 \in \{1, 2\} \setminus \{i_3\}$, then $S_{i_5i_6} = \emptyset$, for $i_6 \in \{i_1, i_2\} \setminus \{i_4\}$ and $S_{i_1i_2i_5} = \emptyset$,
- (v) $S_{12} = \emptyset$ and $|S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_3i_4}| = 2$, for some unique $i_3 \in \{1, 2\}$ and for all $i_4 \in \{i_1, i_2\}$, then $S_{i_4i_5} = \emptyset$, for $i_5 \in \{1, 2\} \setminus \{i_3\}$ and $S_{i_1i_2i_5} = \emptyset$,
- (vi) $S_{i_1i_2} = \emptyset$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_3i_4}| = 2$, for some unique $i_3 \in \{1, 2\}$ and for all $i_4 \in \{i_1, i_2\}$, then $S_{i_4i_5} = \emptyset$, for all $i_4 \in \{i_1, i_2\}$ and for $i_5 \in \{1, 2\} \setminus \{i_3\}$,
- (vii) $S_{i_1i_2} = \emptyset$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_3i_4}| = 3$, for some unique $i_3 \in \{1, 2\}$ and for some unique $i_4 \in \{i_1, i_2\}$, then $|S_{i_3i_5}| = 1$, for $i_5 \in \{i_1, i_2\} \setminus \{i_4\}$ and $S_{i_1i_6} = S_{i_2i_6} = \emptyset$, for $i_6 \in \{1, 2\} \setminus \{i_3\}$,
- (viii) $|S_{12}| = 2$. Also, if $|S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$, then $S_{i_1i_3} = S_{i_2i_3} = S_{i_1i_2i_3} = \emptyset$, for all $i_3 \in \{1, 2\}$,

- (ix) $S_{12} = \emptyset$ and $|S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_3i_4}| = 2$, for some unique $i_3 \in \{1, 2\}$, for some unique $i_4 \in \{i_1, i_2\}$ and $|S_{i_4i_5}| = 1$, for $i_5 \in \{1, 2\} \setminus \{i_3\}$, then $S_{1i_6} = S_{2i_6} = \emptyset$, for $i_6 \in \{i_1, i_2\} \setminus \{i_4\}$,
- (x) $|S_{12}| = |S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_3i_4}| = 1$, for all $i_3 \in \{1, 2\}$ and for some unique $i_4 \in \{i_1, i_2\}$, then $S_{i_3i_5} = \emptyset$, for all $i_3 \in \{1, 2\}$ and for some unique $i_5 \in \{i_1, i_2\} \setminus \{i_4\}$,
- (xi) $|S_{12}| = |S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$. Also, if $|S_{i_3i_4}| = 1$, for some unique $i_3 \in \{1, 2\}$ and for all $i_4 \in \{i_1, i_2\}$, then $S_{i_4i_5} = \emptyset$, for $i_5 \in \{1, 2\} \setminus \{i_3\}$.

Lemma 2.9. Suppose that $|\bigcup_{t=1}^{4} S_t| = 7$ and $|S_1| = 4$. If one of the following conditions holds, then $\Gamma_2(L)$ is not a toroidal graph.

- (i) $|S_{i_1i_2}| = |S_{i_1i_3}| = 1$, for $i_1, i_2, i_3 \notin \{1\}$.
- (ii) $|S_{1i_1}| = |S_{i_2i_3}| = 1$, for some unique $i_2, i_3 \notin \{1, i_1\}$.
- (iii) $|S_{i_1i_2i_3}| = |S_{i_1i_2}| = 1$, for some unique $i_1, i_2, i_3 \notin \{1\}$.
- (iv) $|S_{i_1i_2i_3}| = 2$, for $i_1, i_2, i_3 \notin \{1\}$.
- (v) $|S_{i_1i_2}| = 2$, for some unique $i_1, i_2 \notin \{1\}$.

Proof.

- (i) If $|S_{234}| \ge 2$, then the contraction of $\Gamma_2(L)$ contains a subgraph isomorphic to $K_{4,5}$.
- (ii) If S_{23} , S_{24} or S_{34} has at least two elements, then one can find a copy of $K_{4,5}$ in the structure of the contraction of $\Gamma_2(L)$.
- (iii) If $|S_{234}| = 1$ and S_{23} , S_{24} or S_{34} has one element, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].
- (iv) If $|S_{23}| = |S_{24}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].
- (v) If $|S_{12}| = |S_{34}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].

In all of the above cases, $\Gamma_2(L)$ is not a toroidal graph.

Now, we may assume that S_{234} has at most one element and $S_{23} = S_{24} = S_{34} = \emptyset$. In this situation, $\Gamma_2(L)$ is contained in $K_8 \setminus (K_3 \cup K_2)$. Hence it is a toroidal graph (cf. [5, p.55]). In addition, we assume that S_{34} has exactly one element. Then $S_{234} = S_{12} = S_{23} = S_{24} = \emptyset$. So $\Gamma_2(L)$ is contained in $K_8 \setminus (K_3 \cup K_2)$, which is toroidal (cf. [5, p.55]).

As a consequence of the above discussion and Lemma 2.9., one can easily check that the toroidality of the graph $\Gamma_2(L)$, when $|\bigcup_{t=1}^4 S_t| = 7$ and $|S_1| = 4$.

Theorem 2.10. Suppose that $|\bigcup_{t=1}^{4} S_t| = 7$ and $|S_1| = 4$. Then $\Gamma_2(L)$ is a toroidal graph if and only if one of the following conditions is satisfied:

- (i) If $|S_{i_1i_2i_3}| = 1$, then $S_{i_1i_2} = \emptyset$, for all $i_1, i_2, i_3 \notin \{1\}$.
- (ii) If $|S_{i_1i_2}| = 1$, for some unique $i_1, i_2 \notin \{1\}$, then $S_{i_1i_2i_3} = \emptyset$, for $i_3 \notin \{1\}$ and $S_{1i_4} = S_{i_1i_4} = S_{i_2i_4} = \emptyset$, for $i_4 \notin \{i_1, i_2\}$.

Lemma 2.11. Suppose that $|\bigcup_{t=1}^{4} S_t| = 7$, $|S_1| = 3$ and $|S_2| = 2$. If one of the following conditions holds, then the graph $\Gamma_2(L)$ is not toroidal.

- (i) $|S_{2i_1i_2}| \ge 2$, for $i_1, i_2 \notin \{1\}$.
- (ii) $|S_{1i_1}| \geq 3$, for some unique $i_1 \notin \{2\}$.
- (iii) $|S_{2i_1}| \ge 2$, for some unique $i_1 \notin \{1\}$.
- (iv) $|S_{i_1i_2}| \ge 2$, for $i_1, i_2 \notin \{1, 2\}$.
- (v) $|S_{2i_1i_2}| = |S_{i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$.
- (vi) $|S_{2i_1i_2}| = |S_{2i_3}| = 1$, for $i_1, i_2 \notin \{1, 2\}$ and for some unique $i_3 \in \{i_1, i_2\}$.
- (vii) $|S_{2i_1i_2}| = 1$ and $|S_{1i_3}| = 2$, for $i_1, i_2 \notin \{1, 2\}$ and for some unique $i_3 \in \{i_1, i_2\}$.
- (viii) $|S_{1i_1i_2}| = |S_{1i_1}| = |S_{2i_1}| = |S_{i_1i_2}| = 1$, for some unique $i_1, i_2 \in \{3, 4\}$.
- (ix) $|S_{i_1i_2}| = 1$ and $|S_{1i_1}| = 2$, for some unique $i_1, i_2 \in \{3, 4\}$.
- (x) $|S_{i_1i_2}| = 1$ and $|S_{12}| = 2$, for $i_1, i_2 \notin \{1, 2\}$.
- (xi) $|S_{2i_1}| = 1$ and $|S_{1i_1}| = 2$, for some unique $i_1 \in \{3, 4\}$.
- (xii) $|S_{i_1i_2}| = |S_{2i_3}| = 1$, for $i_1, i_2 \notin \{1, 2\}$ and for some unique $i_3 \in \{i_1, i_2\}$.
- (xiii) $|S_{2i_1}| = |S_{2i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$.
- (xiv) $|S_{1i_1}| = |S_{2i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$.
- (xv) $|S_{12}| = |S_{1i_1}| = |S_{i_1i_2}| = 1$, for some unique $i_1, i_2 \in \{3, 4\}$.
- (xvi) $|S_{12}| = |S_{i_1i_2}| = |S_{1i_1i_2}| = 1$, for $i_1, i_2 \notin \{1, 2\}$.

Proof.

- (i) If $|S_{234}| \ge 2$, then the complement of $\Gamma_2(L)$ is contained in V6.5, one of the listed graphs in [5].
- (ii) If $|S_{13}| \ge 3$ or $|S_{14}| \ge 3$, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{3,7}$.
- (iii) If $|S_{23}| \ge 2$ or $|S_{24}| \ge 2$, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$.
- (iv) If $|S_{34}| \ge 2$, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$.
- (v) If $|S_{234}| = |S_{34}| = 1$, then the complement of $\Gamma_2(L)$ is contained in U6.6b, one of the listed graphs in [5].

- (vi) If $|S_{234}| = |S_{24}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].
- (vii) If $|S_{234}| = 1$ and $|S_{14}| = 2$, then $\Gamma_2(L)$ contains a subgroph isomorphic to G_3 , one of the listed graphs in [11].
- (viii) If $|S_{134}| = |S_{13}| = |S_{23}| = |S_{34}| = 1$, then the complement of the contraction of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].
- (ix) If $|S_{34}| = 1$ and $|S_{14}| = 2$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11].
- (x) If $|S_{34}| = 1$ and $|S_{12}| = 2$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11].
- (xi) If $|S_{24}| = 1$ and $|S_{14}| = 2$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11].
- (xii) If $|S_{24}| = |S_{34}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].
- (xiii) If $|S_{23}| = |S_{24}| = 1$, then the complement of $\Gamma_2(L)$ is contained in $W^*7.5$, one of the listed graphs in [5], and so it is not toroidal (see Figure 31). Since in Figure 31, we have the vertices $a_1, a_2, a_3 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{23} \in S_{23}$ and $s_{24} \in S_{24}$.

Figure 31

- (xiv) If $|S_{13}| = |S_{24}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5].
- (xv) If $|S_{12}| = |S_{13}| = |S_{34}| = 1$, then $\Gamma_2(L)$ contains a subgraph isomorphic to G_3 , one of the listed graphs in [11].
- (xvi) If $|S_{12}| = |S_{34}| = |S_{134}| = 1$, then $\Gamma_2(L)$ is contained in S5.6, one of the listed graphs in [5] (see Figure 32). In Figure 32, we have the vertices $a_1, a_2, a_3 \in S_1$, $b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{12} \in S_{12}$ and $s_{34} \in S_{34}$.

Moreover, we assume that S_{34} and S_{13} are singleton sets and $S_{12} = S_{23} = S_{24} = S_{234} = \emptyset$. Then the complement of $\Gamma_2(L)$ contains C420, one of the listed graphs in [5] (see Figure 33). In Figure 33, $a_1, a_2, a_3 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{13} \in S_{13}$ and $s_{34} \in S_{34}$. So it is toroidal.

Also, if S_{12} and S_{34} are singleton sets and $S_{13} = S_{14} = S_{23} = S_{24} = S_{134} = S_{234} = \emptyset$, then the complement of $\Gamma_2(L)$ contains C402, one of the listed graphs in [5]. So it is toroidal. Now, consider S_{13} and S_{14} have exactly one element and $S_{23} = S_{24} = S_{34} = S_{234} = \emptyset$. Then the complement of $\Gamma_2(L)$ contains C517, one of the listed graphs in [5] (see Figure 34). In Figure 34, we have $a_1, a_2, a_3 \in S_1$, $b_1, b_2 \in S_2, c \in S_3, d \in S_4, s_{13} \in S_{13}$ and $s_{14} \in S_{14}$. So it is toroidal.

In the case that S_{14} and S_{24} have exactly one element and $S_{13} = S_{23} = S_{34} = S_{234} = \emptyset$, the complement of $\Gamma_2(L)$ contains C403, one of the listed graphs in [5] (see Figure 35). In Figure 35, we have the vertices $a_1, a_2, a_3 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3, d \in S_4, s_{14} \in S_{14}$ and $s_{24} \in S_{24}$. Therefore it is toroidal.

Now, if S_{234} and S_{14} have exactly one element and $S_{13} = S_{23} = S_{24} = S_{34} = \emptyset$,

Figure 35

then the complement of $\Gamma_2(L)$ contains C402, one of the listed graphs in [5]. So it is toroidal.

Finally, if S_{14} has two elements and $S_{13} = S_{23} = S_{24} = S_{34} = S_{234} = \emptyset$, then the complement of $\Gamma_2(L)$ contains C603, one of the listed graphs in [5]. So it is toroidal.

Remark 2.12. Note that if the size of the set $\bigcup_{t=1}^{4} S_t$ is seven, $|S_1| = 3$, $|S_2| = 2$ and one of the following cases holds, then it is a question that whether $\Gamma_2(L)$ is toroidal or not.

Case 1. $|S_{13}| = |S_{14}| = |S_{234}| = 1$. Case 2. $|S_{13}| = 1$ and $|S_{14}| = 2$. Case 3. $|S_{13}| = |S_{14}| = |S_{34}| = 1$

Now, the next theorem follows immediately from Lemma 2.11 and Remark 2.12.

Theorem 2.13. Suppose that $|\bigcup_{t=1}^{4} S_t| = 7$, $|S_1| = 3$, $|S_2| = 2$, and also the cases which are mentioned in Remark 2.12. do not hold. Then the graph $\Gamma_2(L)$ is toroidal if and only if one of the following conditions holds:

- (i) $|S_{i_1i_2}| = |S_{1i_1}| = 1$ and $S_{2i_1i_2} = S_{12} = S_{1i_2} = S_{2i_1} = S_{2i_2} = \emptyset$, for some unique $i_1, i_2 \in \{3, 4\}$,
- (ii) $|S_{i_1i_2}| = |S_{12}| = 1$ and $S_{1i_1i_2} = S_{2i_1i_2} = S_{1i_1} = S_{1i_2} = S_{2i_1} = S_{2i_2} = \emptyset$, for $i_1, i_2 \notin \{1, 2\}$,

- $\text{(iii)} \ |S_{1i_1}| = |S_{1i_2}| = 1 \ and \ S_{2i_1i_2} = S_{2i_1} = S_{2i_2} = S_{i_1i_2} = \varnothing, \ for \ i_1, i_2 \not\in \{1, 2\},$
- (iv) $|S_{1i_1}| = |S_{2i_1}| = 1$ and $S_{2i_1i_2} = S_{1i_2} = S_{2i_2} = S_{i_1i_2} = \emptyset$, for some unique $i_1, i_2 \in \{3, 4\}$,
- (v) $|S_{2i_1i_2}| = |S_{1i_1}| = 1$ and $S_{1i_2} = S_{2i_1} = S_{2i_2} = S_{i_1i_2} = \emptyset$, for some unique $i_1, i_2 \in \{3, 4\},$
- (vi) $|S_{1i_1}| = 2$ and $S_{2i_1i_2} = S_{1i_2} = S_{2i_1} = S_{2i_2} = S_{i_1i_2} = \emptyset$, for some unique $i_1, i_2 \in \{3, 4\}$.

Lemma 2.14. Suppose that $|\bigcup_{t=1}^{4} S_t| = 7$ and $|S_1| = 1$. If one of the following conditions holds, then the graph $\Gamma_2(L)$ is not toroidal.

- (1) $|S_{i_1i_2}| = 3$, for some unique $i_1, i_2 \in \{2, 3, 4\}$.
- (2) $|S_{1i_1}| = 2$, for some unique $i_1 \in \{2, 3, 4\}$.
- (3) $|S_{1i_1}| = |S_{i_2i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$.
- (4) $|S_{1i_1}| = 1$ and $|S_{i_1i_2}| = 2$, for some unique $i_1, i_2 \in \{2, 3, 4\}$.
- (5) $|S_{i_1i_2}| = 2$ and $|S_{i_1i_3}| = 1$, for $i_1, i_2, i_3 \notin \{1\}$.
- (6) $|S_{i_1i_2}| = 2$ and $|S_{1i_1i_3}| = 1$, for $i_1, i_2, i_3 \notin \{1\}$.
- (7) $|S_{i_1i_2}| = 2$ and $|S_{1i_2i_3}| = 1$, for $i_1, i_2, i_3 \notin \{1\}$.
- (8) $|S_{1i_1}| = |S_{1i_2}| = |S_{i_1i_2}| = 1$, for some unique $i_1, i_2 \in \{2, 3, 4\}$.
- (9) $|S_{1i_1}| = 1$, for all $i_1 \notin \{1\}$ and $|S_{1i_1i_2}| = 1$, for some unique $i_1, i_2 \in \{2, 3, 4\}$.
- (10) $|S_{1i_1}| = |S_{i_1i_2}| = |S_{i_1i_3}| = |S_{1i_2i_3}| = 1$, for some unique $i_2, i_3 \in \{2, 3, 4\}$.

Proof. In (1) and (2), the contraction of $\Gamma_2(L)$ contains a subgraph isomorphic to $K_{3,7}$ and $K_{4,5}$, respectively. In (3), the complement of $\Gamma_2(L)$ is contained in S5.5. In (4) and (5), we can find a copy of G_3 in the structure of $\Gamma_2(L)$. In (6) and (7), the complement of $\Gamma_2(L)$ is contained in U6.6b. In (8), the complement of the contraction of $\Gamma_2(L)$ is contained in $Z^*8.3$, one of the listed graphs in [5] (see Figure 36). In Figure 36, we have $a \in S_1$, $b_1, b_2 \in S_2$, $c_1, c_2 \in S_3$, $d_1, d_2 \in S_4$, $s_{13} \in S_{13}$, $s_{14} \in S_{14}$ and $s_{34} \in S_{34}$.

In (9), the complement of the contraction of $\Gamma_2(L)$ is contained in $Z^*8.3$, one of the listed graphs in [5]. In (10), the complement of the contraction of $\Gamma_2(L)$ is contained in W6.6a, one of the listed graphs in [5]. In the all of the above cases, $\Gamma_2(L)$ is not toroidal.

In the sequel, we assume that S_{12} , S_{13} and S_{14} are singleton sets and $S_{23} = S_{24} = S_{34} = S_{123} = S_{124} = S_{134} = \emptyset$. Then the graph $\Gamma_2(L)$ is toroidal, which is pictured in Figure 37. In Figure 37, $a \in S_1$, $b_1, b_2 \in S_2$, $c_1, c_2 \in S_3$, $d_1, d_2 \in S_4$, $s_{12} \in S_{12}$, $s_{13} \in S_{13}$ and $s_{14} \in S_{14}$.

Also, consider S_{14} , S_{24} and S_{34} are singleton sets and $S_{12} = S_{13} = S_{23} = S_{123} = \emptyset$.

Then $\Gamma_2(L)$ is toroidal (see Figure 38). In Figure 38, we have the vertices $a \in S_1$, $b_1, b_2 \in S_2$, $c_1, c_2 \in S_3$, $d_1, d_2 \in S_4$, $s_{14} \in S_{14}$, $s_{24} \in S_{24}$ and $s_{34} \in S_{34}$. We observe that if S_{23} has two elements and $S_{12} = S_{13} = S_{14} = S_{24} = S_{34} = S_{124} = S_{134} = \emptyset$, then the complement of $\Gamma_2(L)$ contains C603, one of the listed graphs in [5]. So it is a toroidal graph. Finally, if S_{23} , S_{24} and S_{34} are singleton sets and $S_{12} = S_{13} = S_{14} = \emptyset$, then the graph $\Gamma_2(L)$ is pictured in Figure 39, which is toroidal. In Figure 39, we have the vertices $a \in S_1$, $b_1, b_2 \in S_2$, $c_1, c_2 \in S_3$, $d_1, d_2 \in S_4$, $s_{23} \in S_{23}$, $s_{24} \in S_{24}$ and $s_{34} \in S_{34}$.

Figure 39

Theorem 2.15. Suppose that $|\bigcup_{t=1}^{4} S_t| = 7$ and $|S_1| = 1$. Then $\Gamma_2(L)$ is toroidal if and only if one of the following conditions holds:

- (i) If $|S_{1i_1}| = 1$, for all $i_1 \notin \{1\}$, then $S_{i_1i_2} = S_{1i_1i_2} = \emptyset$, for all $i_1, i_2 \notin \{1\}$,
- (ii) If $|S_{1i_1}| = |S_{i_1i_2}| = |S_{i_1i_3}| = 1$, for some unique $i_1, i_2, i_3 \in \{2, 3, 4\}$, then $S_{1i_2} = S_{1i_3} = S_{1i_2i_3} = \emptyset$,
- (iii) If $|S_{i_1i_2}| = 2$, for some unique $i_1, i_2 \in \{2, 3, 4\}$, then $S_{i_1i_3} = S_{i_2i_3} = S_{1i_1i_3} = S_{1i_2i_3} = \emptyset$, for $i_3 \notin \{1, i_1, i_2\}$ and $S_{1i_1} = \emptyset$, for all $i_1 \notin \{1\}$,
- (iv) If $|S_{i_1i_2}| = 1$, for all $i_1, i_2 \notin \{1\}$, then $S_{1i_1} = \emptyset$, for all $i_1 \notin \{1\}$.

Theorem 2.16. Suppose that $|\bigcup_{t=1}^{4} S_t| = 8$. Then the graph $\Gamma_2(L)$ is toroidal if and only if one of the following conditions holds:

- (i) There is S_i with $|S_i| = 5$, for $1 \le i \le 4$ and $S_{i_1 i_2 i_3} = S_{i_1 i_2} = \emptyset$, for all $i_1, i_2, i_3 \notin \{i\}$,
- (ii) There are unique S_i , S_j with $|S_i| = 4$ and $|S_j| = 2$, for $1 \le i, j \le 4$ and $S_{i_1i_2i_3} = S_{i_1i_2} = \emptyset$, for all $i_1, i_2, i_3 \notin \{i\}$, $S_{ii_1} = \emptyset$, for $i_1 \notin \{i, j\}$,

- (iii) There are unique S_i and S_j with $|S_i| = |S_j| = 3$, for $1 \le i, j \le 4$ and $S_{1i_1i_2} = S_{ji_1i_2} = S_{ii_1} = S_{ji_1} = S_{i_1i_2} = \emptyset$, for all $i_1, i_2 \notin \{i, j\}$,
- (iv) There are unique S_i and S_j with $|S_i| = 3$ and $|S_j| = 1$, for $1 \le i, j \le 4$ and $|S_{ii_1}| = 1$, for some unique $i_1 \in \{1, 2, 3, 4\} \setminus \{i, j\}$. Also, $S_{ij} = S_{ii_2} = S_{i_3i_4} = S_{ii_2j} = S_{i_1i_2j} = \emptyset$, for $i_2 \notin \{i, j, i_1\}$ and for all $i_3, i_4 \notin \{i\}$,
- (v) For all $1 \le i \le 4$, $|S_i| = 2$ and $S_{i_1i_2i_3} = S_{i_1i_2} = \emptyset$, for $1 \le i_1, i_2, i_3 \le 4$.

Proof. If one of the above conditions holds, then one can easily check that $\Gamma_2(L)$ is toroidal.

Conversely, let $\Gamma_2(L)$ be a toroidal graph. Then we can consider the following cases:

- (i) Assume that there is a unique S_i, say S₁, such that |S₁| = 5. If S₂₃₄ has at least one element, then we can find a copy of K_{4,5} in the contraction of Γ₂(L), which is impossible. Also, if S₂₃, S₂₄ or S₃₄ has at least one element, then the complement of Γ₂(L) is contained in S5.5, one of the listed graphs in [5]. Thus it is not toroidal, which is again impossible. Hence for toroidality of Γ₂(L), we assume that S₂₃₄ = S₂₃ = S₂₄ = S₃₄ = Ø. In this situation, Γ₂(L) is contained in K₈ \ (K₃ ∪ K₂) (cf. [5, p.55]).
- (ii) Assume that there are unique S_i and S_j , say S_1 and S_2 , such that $|S_1| = 4$ and $|S_2| = 2$. If S_{234} , S_{23} or S_{24} has at least one element, then we can find a copy of $K_{4,5}$ in the contraction of $\Gamma_2(L)$. So it is not toroidal, which is impossible. Also, if S_{13} or S_{14} has at least one element, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5]. Thus it is not toroidal, which is impossible. In addition, if S_{34} has at least one element, then the complement of $\Gamma_2(L)$ is contained in W7.7d, one of the listed graphs in [5] (see Figure 40). In Figure 40, $a_1, a_2, a_3, a_4 \in S_1$, $b_1, b_2 \in S_2$, $c \in S_3$, $d \in S_4$, $s_{34} \in S_{34}$. Thus it is not toroidal, which is impossible.

Therefore we assume that all of the above sets are empty. In this situation, $\Gamma_2(L)$ is contained in $K_8 \setminus (K_3 \cup K_2)$, which is toroidal (cf. [5, p.55]).

(iii) Assume that there are unique S_i and S_j , say S_1 and S_2 , such that $|S_1| = |S_2| = 3$. If S_{134} or S_{234} has at least one element, then the complement of

 $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5]. Thus it is not toroidal, which is impossible. Moreover if S_{13} , S_{14} , S_{23} or S_{24} has at least one element, then the contraction of $\Gamma_2(L)$ contains a subgraph isomorphic to $K_{4,5}$. It means that $\Gamma_2(L)$ is not toroidal, a contradiction. Also, if S_{34} has at least one element, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5]. Thus it is not toroidal, a contradiction. Therefore, for toroidality of $\Gamma_2(L)$, we assume that all of the above sets are empty. In this situation, $\Gamma_2(L)$ is contained in $K_8 \setminus (K_3 \cup K_2)$ (cf. [5, p.55]).

- (iv) Assume that there are unique S_i and S_j , say S_1 and S_2 , such that $|S_1| = 3$ and $|S_2| = 1$. If S_{13} or S_{14} has at least two elements, then we can find a copy of $K_{3,7}$ in the contraction of $\Gamma_2(L)$, which is impossible. Also, if S_{12} , S_{23} , S_{24} or S_{34} has at least one element, then we can find a copy of $K_{4,5}$ in the contraction of $\Gamma_2(L)$, a contradiction. In addition, if S_{234} has at least one element, then the complement of $\Gamma_2(L)$ is contained in S5.5, one of the listed graphs in [5]. Thus it is not toroidal, a contradiction. In the case that $|S_{13}| = |S_{14}| = 1$, the graph $\Gamma_2(L)$ contains G_3 , one of the listed graphs in [11]. Hence it is not toroidal, which is contradiction. Finally, if $|S_{13}| = |S_{124}| = 1$ or $|S_{14}| = |S_{123}| = 1$, then the complement of $\Gamma_2(L)$ is contained in S5.6, one of the listed graphs in [5]. Thus it is not toroidal, a contradiction. So, for the toroidality of $\Gamma_2(L)$, we assume that either S_{13} has at most one element by condition $S_{12} = S_{14} = S_{23} = S_{24} = S_{34} = S_{124} = S_{234} = \emptyset$, or S_{14} has at most one element by considering $S_{12} = S_{13} = S_{23} = S_{24} = S_{34} = S_{123} = S_{234} = \emptyset$. In these cases, the complement of $\Gamma_2(L)$ contains a subgraph isomorphic to C415, one of the listed graphs in [5], which is toroidal.
- (v) Assume that S_1 , S_2 , S_3 and S_4 have two elements. As S_{123} , S_{124} , S_{134} or S_{234} has at least one element, then $\Gamma_2(L)$ contains $K_8 \setminus (K_{12} \cup 2K_2)$. So it is not toroidal (see [4]). Also, if S_{12} , S_{13} , S_{14} , S_{23} , S_{24} or S_{34} has at least one element, then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$. The contradiction is clear. Hence we assume that all of the above sets are empty. In this situation, $\Gamma_2(L)$ is isomorphic to a complete 4-partite graph with all parts of size two, which is toroidal.

We end this paper with the following theorem.

Theorem 2.17. Suppose that $|\bigcup_{t=1}^{4} S_t| = 9$. Then the graph $\Gamma_2(L)$ is toroidal if and only if there exists S_i with $|S_i| = 6$, for $1 \le i \le 4$ and $S_{i_1i_2i_3} = S_{i_1i_2} = \emptyset$, for all $i_1, i_2, i_3 \notin \{i\}$.

Proof. Let $\Gamma_2(L)$ be a toroidal graph and for all $1 \leq i \leq 4$, $|S_i| \neq 6$. Then the contraction of $\Gamma_2(L)$ contains a copy of $K_{4,5}$. Hence it is not toroidal, which is impossible. Therefore we assume that there exists a unique S_i with $|S_i| = 6$, for $1 \leq i \leq 4$. Now, if $|S_{234}| \geq 1$, then we can see a subgraph isomorphic to $K_{4,6}$ in the contraction of $\Gamma_2(L)$, which is not toroidal. When S_{23} , S_{24} or S_{34} has at least one element, the contraction of $\Gamma_2(L)$ contains a copy of $K_{3,7}$. It means that $\Gamma_2(L)$ is

not toroidal, which is impossible. Now, assume that all of the sets S_{23} , S_{24} , S_{34} and S_{234} are empty. Then the complement of $\Gamma_2(L)$ contains C603, one of the listed graphs in [5], which is toroidal.

The converse statement is clear.

Acknowledgments. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

- M. Afkhami and K. Khashyarmanesh, *The comaximal graph of a lattice*, Bull. Malays. Math. Sci. Soc., **37**(2014), 261–269.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [3] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B 24(1978), 24–33.
- [4] F. Harary, P. C. Kainen, A. J. Schwenk and A. T. White, A maximal toroidal graph which is not a triangulation, Math.Scand. 33(1973), 108–112.
- [5] A. L. Hlavacek, 9-vertex irreducible graphs for the torus, PhD. thesis, The university of Ohio State, 1997.
- [6] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319(2008), 1801-1808.
- [7] J. B. Nation, Notes on Lattice Theory, Cambridge studies in advanced mathematics, Vol. 60, Cambridge University Press, Cambridge, 1998.
- [8] G. Ringel, Map Color Theorem, Springer-Verlag, New York/Heidelberg, 1974.
- P. K. Sharma, S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176(1995), 124–127.
- [10] H. J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320(2008), 2917–2933.
- [11] D. Zeps, Förbidden minors for projective plane are free-toroidal or non-toroidal, IUUK-CE-ITI series (2009).