KYUNGPOOK Math. J. 56(2016), 683-714
http://dx.doi.org/10.5666/KMJ.2016.56.3.683
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

When the Comaximal Graph of a Lattice is Toroidal

Mojgan Afkhami
Department of Mathematics, University of Neyshabur, P. O. Box 91136-899, Neyshabur, Iran
e-mail: mojgan.afkhami@yahoo.com

Khadijeh Ahmad Javaheri and Kazem Khashyarmanesh*
Department of Pure Mathematics, Internatinal Compus of Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran
e-mail: javaheri1158kh@yahoo.com and khashyar@ipm.ir
Abstract. In this paper we investigate the toroidality of the comaximal graph of a finite lattice.

1. Introduction

The comaximal graph of a commutative ring R was first defined in [9]. Also, in [6] and [10], the authors studied several properties of the comaximal graph. Recently, in [1], the comaximal graph of a lattice was defined and studied.

The comaximal graph of a lattice $L=(L, \wedge, \vee)$, denoted by $\Gamma(L)$, is an undirected graph with all elements of L being the vertices, and two distinct vertices a and b are adjacent if and only if $a \vee b=1$. In this paper, we study the finite lattices L with toroidal comaximal graphs.

First we recall some definitions and notation on lattices and graphs.
Recall that a lattice is an algebra $L=(L, \wedge, \vee)$ satisfying the following conditions: for all $a, b, c \in L$,

1. $a \wedge a=a, a \vee a=a$,
2. $a \wedge b=b \wedge a, a \vee b=b \vee a$,
3. $(a \wedge b) \wedge c=a \wedge(b \wedge c), a \vee(b \vee c)=(a \vee b) \vee c$, and
4. $a \vee(a \wedge b)=a \wedge(a \vee b)=a$.

* Corresponding Author.

Received September 17, 2013; accepted April 11, 2014.
2010 Mathematics Subject Classification: 05C10, 06A07, 06B10.
Key words and phrases: Lattice, Comaximal graph, Toroidal graph.

Note that in every lattice the equality $a \wedge b=a$ always implies that $a \vee b=b$. Also, by [7, Theorem 2.1], one can define an order \leqslant on L as follows: For any $a, b \in L$, we set $a \leqslant b$ if and only if $a \wedge b=a$. Then (L, \leqslant) is an ordered set in which every pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.). Conversely, let L be an ordered set such that, for every pair $a, b \in L$, g.l.b. (a, b), l.u.b. $(a, b) \in L$. For each a and b in L, we define $a \wedge b:=$ g.l.b. (a, b) and $a \vee b:=$ l.u.b. (a, b). Then (L, \wedge, \vee) is a lattice. A lattice L is said to be bounded if there are elements 0 and 1 in L such that $0 \wedge a=0$ and $a \vee 1=1$, for all $a \in L$.

Clearly, every finite lattice is bounded. Recall that in a partially ordered set (P, \leqslant), we say that a covers b or b is covered by a, in notation $b \prec a$, if and only if $b<a$ and there is no element p in P such that $b<p<a$. An element a in L is called a co-atom if $a \prec 1$. We denote the sets of all co-atoms in a lattice L by $C(L)$. Also, for an element $a \in L$, we set $[a]^{l}=\{b \in L \mid b \leq a\}$.

In a graph G, for two distinct vertices a and b in G, the notation $a-b$ means that a and b are adjacent. For a positive integer r, an r-partite graph is one whose vertex-set can be partitioned into r subsets so that no edge has both ends in any one subset. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. A graph G is said to be contracted to a graph H if there exists a sequence of elementary contractions which transforms G into H, where an elementary contraction consists of deletion of a vertex or an edge or the identification of two adjacent vertices. A subdivision of a graph is any graph that can be obtained from the original graph by replacing edges by paths. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A remarkable simple characterization of the planar graphs was given by Kuratowski in 1930. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ (cf. [2, p.153]).

By a surface we mean a connected compact 2-dimensional manifold without boundary, that is a topological space such that each point has a neiborhood homeomorphic to the open disc. It is well-known that every oriented compact surface is homeomorphic to a sphere with g handles. This number g is a called the genus of the surface. The torus can be though of as a sphere with one handle. This means that the genus of torus is 1 .

The canonical representation of a torus

A graph G is embeddable in a surface S if the vertices of G are assigned to distinct points in S such that every edge of G is a simple arc in S connecting the two vertices which are joined in G. If G can not be embedded in S, then G has at least two edges intersecting at a point which is not a vertex of G. We say a graph G is irreducible for a surface S if G does not embed in S, but any proper subgraph of G embeds in S. A toroidal graph is a graph that can be embedded in a torus. Note that the genus of a planar graph is zero. So the planar graph is not considered as a toroidal graph. Also, a complete graph K_{n} is toroidal if $n=5,6$ or 7 , and the only toroidal complete bipartite graphs are $K_{4,4}$ and $K_{3, n}$, with $n=3,4,5,6$ (see [3] or [8]).

2. Toroidal Ccomaximal Graph of a Lattice

In this paper, we assume that L is a finite lattice. The comaximal graph of a lattice L, denoted by $\Gamma(L)$, is an undirected graph with all elements of L being the vertices, and two distinct vertices a and b are adjacent if and only if $a \vee b=1$ (see [1]). We denote the induced subgraph of $\Gamma(L)$ with vertex set $L \backslash(J(L) \cup\{1\})$, by $\Gamma_{2}(L)$, where $J(L)$ is the set $\bigcap_{m \in C(L)}[m]^{l}$. It is easy to see that the vertex 1 is adjacent to all vertices, also the vertices in $J(L)$ are isolated vertices in the induced subgraph with vertex set $L \backslash\{1\}$.

In this paper, we explore the toroidality of the graph $\Gamma_{2}(L)$. Clearly, by [1], if $\Gamma_{2}(L)$ is planar, then $|C(L)| \leq 4$. As $|C(L)|=1$, then the graph $\Gamma_{2}(L)$ is an empty graph. Note that when $|C(L)|=2$, we have that $\Gamma_{2}(L)$ is a complete bipartite graph. So $\Gamma_{2}(L)$ is planar if and only if either $\left|\left[m_{1}\right]^{l} \backslash\left[m_{2}\right]^{l}\right| \leq 2$ or $\left|\left[m_{2}\right]^{l} \backslash\left[m_{1}\right]^{l}\right| \leq 2$, where $C(L)=\left\{m_{1}, m_{2}\right\}$. Also, one can easily see that $\Gamma_{2}(L)$ is toroidal if and only if either $\left|\left[m_{1}\right]^{l} \backslash\left[m_{2}\right]^{l}\right|=\left|\left[m_{2}\right]^{l} \backslash\left[m_{1}\right]^{l}\right|=4$ or $\left|\left[m_{1}\right]^{l} \backslash\left[m_{2}\right]^{l}\right|=3$ and $\left|\left[m_{2}\right]^{l} \backslash\left[m_{1}\right]^{l}\right| \in\{3,4,5,6\}$, where $C(L)=\left\{m_{1}, m_{2}\right\}$. We begin this section by the following lemma.
Lemma 2.1. If $\Gamma_{2}(L)$ is toroidal, then the size of $C(L)$ is at most seven.
Proof. Assume to the contrary that $|C(L)| \geq 8$. Then the induced subgraph of $\Gamma_{2}(L)$ with vertex set $C(L)$ is isomorphic to K_{8}, which is a contradiction.

By Lemma 2.1., it is sufficient to study the toroidality of the graph $\Gamma_{2}(L)$ in the cases that $C(L)$ has $3,4,5,6$ or 7 elements. In this paper, we discuss on the case that $|C(L)|=4$. First we begin by the following notation.
Notation. Suppose that $|C(L)|=n$, where $n>1$. To simplify notation, for $1 \leq$ $i \leq n$, we denote the set $\left[m_{i}\right]^{l}$, where $m_{i} \in C(L)$, by \mathfrak{m}_{i}. We set $S_{t}:=\mathfrak{m}_{t} \backslash \bigcup_{i \notin\{t\}} \mathfrak{m}_{i}$, where $1 \leq i, t \leq n$. Also, $S_{t_{1} t_{2} \ldots t_{k}}:=\left(\mathfrak{m}_{t_{1}} \cap \mathfrak{m}_{t_{2}} \cap \cdots \cap \mathfrak{m}_{t_{k}}\right) \backslash \bigcup_{i \notin\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}} \mathfrak{m}_{i}$, where $1 \leq t_{1}<t_{2}<\cdots<t_{k} \leq n$. Note that each element in S_{i} is adjacent to all elements of S_{j}, for $1 \leq i \neq j \leq n$, and also it is adjacent to all elements of $S_{t_{1} t_{2} \ldots t_{k}}$, where $t_{1}, \ldots, t_{k} \notin\{i\}$.

Now, suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right| \geq 10$. Then it is easy to find a subgraph isomorphic to $K_{3,7}$ in the contraction of $\Gamma_{2}(L)$, and so it is not toroidal. Hence we have the
following lemma.
Lemma 2.2. If $\Gamma_{2}(L)$ is toroidal, then $\left|\bigcup_{t=1}^{4} S_{t}\right| \leq 9$.
In this section, we study the toroidality of the graph $\Gamma_{2}(L)$, whenever $5 \leq$ $\left|\bigcup_{t=1}^{4} S_{t}\right| \leq 9$.

Lemma 2.3. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=5,\left|S_{1}\right|=2$ and $\Gamma_{2}(L)$ is a toroidal graph. Then one of the following conditions holds:
(i) $\left|S_{1 i_{1}}\right|=3$, for some unique $i_{1} \in\{2,3,4\}$ and $\left|S_{i_{2} i_{3}}\right|=1, S_{i_{1} i_{2} i_{3}}=S_{i_{1} i_{2}}=$ $S_{i_{1} i_{3}}=\varnothing$, for $i_{2}, i_{3} \notin\left\{1, i_{1}\right\}$.
(ii) $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \in\{2,3,4\}$ and $\left|S_{i_{2} i_{3}}\right|=1$, for all $i_{2}, i_{3} \notin\{1\}$, and also $S_{1 i_{4}}=\varnothing$, for all $i_{4} \notin\left\{1, i_{1}\right\}$.
(iii) $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \notin\{1\}$ and $\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{2} i_{3}}\right|=1,\left|S_{1 i_{2}}\right| \geq 0$, $S_{1 i_{3}}=S_{i_{1} i_{3}}=\varnothing$, for some unique $i_{2}, i_{3} \in\{2,3,4\} \backslash\left\{i_{1}\right\}$.
(iv) $\left|S_{1 i_{1}}\right|=\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=1,\left|S_{i_{2} i_{3}}\right|=2$, and $S_{1 i_{2}}=S_{1 i_{3}}=\varnothing$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$.
(v) $\left|S_{1 i_{1}}\right|=\left|S_{i_{2} i_{3}}\right|=1,\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=2$, and $S_{1 i_{2}}=S_{1 i_{3}}=\varnothing$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$.
(vi) $\left|S_{1 i_{1}}\right|=\left|S_{1 i_{2}}\right|=1, S_{1 i_{3}}=\varnothing$ and $\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$.
(vii) $\left|S_{i_{1} i_{2}}\right|=2$ and $S_{1 i_{1}}=\varnothing$, for all $i_{1}, i_{2} \notin\{1\}$.
(viii) $\left|S_{i_{1} i_{2}}\right|=3,\left|S_{i_{2} i_{3}}\right|=2,\left|S_{i_{1} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$ and $S_{1 i_{1}}=\varnothing$, for all $i_{1} \notin\{1\}$.
(ix) $\left|S_{i_{1} i_{2}}\right|=4,\left|S_{i_{1} i_{3}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$ and $S_{1 i_{1}}=\varnothing$, for all $i_{1} \notin\{1\}$.
(x) $\left|S_{1 i_{1}}\right|=\left|S_{i_{2} i_{3}}\right|=1$ and $S_{i_{1} i_{2} i_{3}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(xi) $S_{i_{1} i_{2}}=\varnothing,\left|S_{1 i_{1}}\right| \geq 0,\left|S_{i_{1} i_{2} i_{3}}\right| \geq 0$, for all $i_{1}, i_{2} \notin\{1\}$ and for some unique $i_{3} \in\{2,3,4\}$.

Proof. By our hypothesis, $\Gamma_{2}(L)$ is toroidal. If S_{234}, S_{23}, S_{24} and S_{34} are empty, then $\Gamma_{2}(L)$ is planar, which is not toroidal. We know that, if the size of one of the sets S_{23}, S_{24} or S_{34} is at least five, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{3,7}$, which is impossible. So the size of all of the above sets is at most four. We have the following situations.
(i) We assume that $\left|S_{14}\right|=4$ and $\left|S_{23}\right|=1$. Then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{3,7}$. So it is not toroidal. Also, if $\left|S_{14}\right|=3,\left|S_{23}\right|=1$ and S_{234} has at least one element, then the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$, one of the listed graphs in [5] (see Figure i). So $\Gamma_{2}(L)$ is not toroidal. In

Figure 1

Figure 1, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14}, s_{14}^{\prime}, s_{14}^{\prime \prime} \in S_{14}$ and $s_{23} \in S_{23}$.

Moreover, if $\left|S_{14}\right|=3,\left|S_{23}\right|=\left|S_{34}\right|=1$, then $\Gamma_{2}(L)$ contains $E 6,2$, one of the listed graphs in [11] (see Figure 2). Hence it is not toroidal. In Figure 2, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14}, s_{14}^{\prime}, s_{14}^{\prime \prime} \in S_{14}, s_{23} \in S_{23}$ and $s_{34} \in S_{34}$. In addition, if $\left|S_{14}\right|=\left|S_{23}\right|=2$, then the contraction of $\Gamma_{2}(L)$ contains a copy

Figure 2
of $K_{4,5}$. So it is not toroidal. Thus, we may assume that $\left|S_{14}\right|=3,\left|S_{23}\right|=1$, $S_{24}=S_{34}=S_{234}=\varnothing$. In this situation, the complement of $\Gamma_{2}(L)$ contains $C 415$, one of the listed graphs in [5] (see Figure 3). So it is toroidal. In Figure $3, a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14}, s_{14}^{\prime}, s_{14}^{\prime \prime} \in S_{14}$ and $s_{23} \in S_{23}$.
(ii) If $\left|S_{14}\right|=\left|S_{34}\right|=2$ and $\left|S_{23}\right|=1$, then the graph $\Gamma_{2}(L)$ contains $E 6,2$,

Figure 3
one of the listed graphs in [11]. So it is not toroidal. Also, if $\left|S_{14}\right|=2$ and $\left|S_{13}\right|=\left|S_{23}\right|=\left|S_{24}\right|=1$, then the graph $\Gamma_{2}(L)$ contains G_{3}, one of the listed graphs in [11] (see Figure 4). Hence it is not toroidal. In Figure ii, $a_{1}, a_{2} \in S_{1}$, $b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{13} \in S_{13}, s_{14}, s_{14}^{\prime} \in S_{14}, s_{23} \in S_{23}$ and $s_{24} \in S_{24}$.

Figure 4
We may assume that $\left|S_{14}\right|=2,\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1$ and $S_{12}=S_{13}=\varnothing$. Then the graph $\Gamma_{2}(L)$, which is pictured in Figure 5, is toroidal. In Figure 5, we have $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14}, s_{14}^{\prime} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}$ and $s_{34} \in S_{34}$.
(iii) In view of the previous situations, we may assume that $\left|S_{14}\right|=2,\left|S_{23}\right|=$ $\left|S_{34}\right|=1,\left|S_{13}\right| \geq 0$ and $S_{12}=S_{24}=\varnothing$. In this case, the graph $\Gamma_{2}(L)$, in Figure 6, is toroidal. In Figure $6, a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}$, $s_{13} \in S_{13}, s_{14}, s_{14}^{\prime} \in S_{14}, s_{23} \in S_{23}$ and $s_{34} \in S_{34}$.
(iv) If $\left|S_{23}\right|=3$ and $\left|S_{14}\right|=1$, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$, and so it is not toroidal. On the other hand, if $\left|S_{23}\right|=2$ and $\left|S_{24}\right|=$ $\left|S_{13}\right|=\left|S_{14}\right|=1$, then the graph $\Gamma_{2}(L)$ contains G_{3}, one of the listed graphs in [11]. Hence it is not toroidal. Also, if $\left|S_{23}\right|=\left|S_{34}\right|=2$ and $\left|S_{14}\right|=1$, then

Figure 5

Figure 6
$\Gamma_{2}(L)$ contains G_{3}, one of the listed graphs in [11]. Hence it is not toroidal. Therefore we may assume that $\left|S_{23}\right|=2,\left|S_{14}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1$ and $S_{12}=S_{13}=\varnothing$. Then the graph $\Gamma_{2}(L)$ is toroidal, which is pictured in Figure 7. In Figure 7, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}, s_{23}, s_{23}^{\prime} \in S_{23}$, $s_{24} \in S_{24}$ and $s_{34} \in S_{34}$.
(v) In view of the previous situations, we may assume that $\left|S_{34}\right|=\left|S_{24}\right|=2$, $\left|S_{23}\right|=\left|S_{14}\right|=1$ and $S_{12}=S_{13}=\varnothing$. In this case, the graph $\Gamma_{2}(L)$, which is pictured in Figure 8, is toroidal. In Figure 8, we have $a_{1}, a_{2} \in S_{1}, b \in S_{2}$, $c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24}, s_{24}^{\prime} \in S_{24}$ and $s_{34}, s_{34}^{\prime} \in S_{34}$.
(vi) If $\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=1$ and $\left|S_{34}\right|=2$, then the complement of the contraction of $\Gamma_{2}(L)$ is contained in $V 6.5$, one of the listed graphs in [5] (see Figure 9). So it is not toroidal. In Figure 9, we have $a_{1}, a_{2} \in S_{1}, b \in S_{2}$, $c \in S_{3}, d \in S_{4}, s_{13} \in S_{13}, s_{23} \in S_{23}, s_{14} \in S_{14}, s_{24} \in S_{24}$ and $s_{34}, s_{34}^{\prime} \in S_{34}$. If $\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1$ and $\left|S_{234}\right| \geq 0$, then $S_{12}=\varnothing$.

Figure 7

Figure 8

Figure 9

In this situation, the graph $\Gamma_{2}(L)$, in Figure 10, is toroidal. In Figure 10, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{13} \in S_{13}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}$, $s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.
(vii) In view of the previous situations, we may assume that $\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=$

Figure 10
2 and $S_{12}=S_{13}=S_{14}=\varnothing$. In this case, the graph $\Gamma_{2}(L)$, in Figure 11, is toroidal. In Figure 11, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{23}, s_{23}^{\prime} \in S_{23}$, $s_{24}, s_{24}^{\prime} \in S_{24}$ and $s_{34}, s_{34}^{\prime} \in S_{34}$.

Figure 11
(viii) If $\left|S_{34}\right|=3$ and $\left|S_{23}\right|=\left|S_{14}\right|=1$, then the graph $\Gamma_{2}(L)$ contains a subgraph isomorphic to $E 6,2$, one of the listed graphs in [11]. So it is not toroidal. Therefore we may assume that $\left|S_{34}\right|=3,\left|S_{24}\right|=2,\left|S_{23}\right|=1$ and $S_{12}=S_{13}=S_{14}=\varnothing$. Then the graph $\Gamma_{2}(L)$ is pictured in Figure 12, is toroidal. In Figure 12, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{23} \in S_{23}$, $s_{24}, s_{24}^{\prime} \in S_{24}$ and $s_{34}, s_{34}^{\prime}, s_{34}^{\prime \prime} \in S_{34}$.
(ix) In view of the previous situations, we may assume that $\left|S_{34}\right|=4,\left|S_{23}\right|=$ $\left|S_{24}\right|=1$ and $S_{12}=S_{13}=S_{14}=\varnothing$. In this case, the graph $\Gamma_{2}(L)$, in Figure 13, is toroidal. In Figure 13, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{23} \in S_{23}$, $s_{24} \in S_{24}$ and $s_{1}, s_{2}, s_{3}, s_{4} \in S_{34}$.

Figure 12

Figure 13
(x) If $\left|S_{12}\right|=\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=\left|S_{234}\right|=1$, then the complement of the contraction of $\Gamma_{2}(L)$ is contained in $Y 7.4$, one of the listed graphs in [5] (see Figure 14). Thus it is not toroidal. In Figure 14, $a_{1}, a_{2} \in S_{1}$, $b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}, s_{13} \in S_{13}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}$, $s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.
We may assume that $\left|S_{12}\right|=\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1$ and $S_{234}=\varnothing$. Then the graph $\Gamma_{2}(L)$, in Figure 15, is toroidal. In Figure 15, $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}, s_{13} \in S_{13}, s_{14} \in S_{14}, s_{23} \in S_{23}$,$s_{24} \in S_{24}$ and $s_{234} \in S_{234}$.
(xi) When $S_{23}=S_{24}=S_{34}=\varnothing,\left|S_{234}\right| \geq 0,\left|S_{12}\right| \geq 0,\left|S_{13}\right| \geq 0$ and $\left|S_{14}\right| \geq 0$, the graph $\Gamma_{2}(L)$ is isomorphic to a subdivision of K_{5}, and so it is toroidal.

Figure 14

Figure 15

Remark 2.4. Note that if the size of the set $\bigcup_{t=1}^{4} S_{t}$ is five, $\left|S_{1}\right|=2$ and one of the following cases holds, then it is a question that whether $\Gamma_{2}(L)$ is toroidal or not.

Case 1. $\left|S_{34}\right|=3$ and $\left|S_{23}\right|=\left|S_{24}\right|=2$.
Case 2. $\left|S_{24}\right|=\left|S_{34}\right|=3$.
Case 3. $\left|S_{24}\right|=2$ and $\left|S_{34}\right|=4$.
Now, the next theorem follows immediately from Lemma 2.3 and Remark 2.4.
Theorem 2.5. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=5$ and $\left|S_{1}\right|=2$, and also the cases which are mentioned in Remark 2.4. do not hold. Then $\Gamma_{2}(L)$ is toroidal if and only if one of the following statements holds:
(i) $\left|S_{1 i_{1}}\right|=3$, for some unique $i_{1} \in\{2,3,4\}$ and $\left|S_{i_{2} i_{3}}\right|=1, S_{i_{1} i_{2} i_{3}}=S_{i_{1} i_{2}}=$ $S_{i_{1} i_{3}}=\varnothing$, for $i_{2}, i_{3} \notin\left\{1, i_{1}\right\}$,
(ii) $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \in\{2,3,4\}$ and $\left|S_{i_{2} i_{3}}\right|=1$, for all $i_{2}, i_{3} \notin\{1\}$, and also $S_{1 i_{4}}=\varnothing$, for all $i_{4} \notin\left\{1, i_{1}\right\}$,
(iii) $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \in\{2,3,4\}$, and $\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{2} i_{3}}\right|=1,\left|S_{1 i_{2}}\right| \geq 0$, $S_{1 i_{3}}=S_{i_{1} i_{3}}=\varnothing$, for some unique $i_{2}, i_{3} \notin\left\{1, i_{1}\right\}$,
(iv) $\left|S_{1 i_{1}}\right|=\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=1$, $\left|S_{i_{2} i_{3}}\right|=2$, and $S_{1 i_{2}}=S_{1 i_{3}}=\varnothing$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$,
(v) $\left|S_{1 i_{1}}\right|=\left|S_{i_{2} i_{3}}\right|=1,\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=2$, and $S_{1 i_{2}}=S_{1 i_{3}}=\varnothing$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$,
(vi) $\left|S_{1 i_{1}}\right|=\left|S_{1 i_{2}}\right|=1, S_{1 i_{3}}=\varnothing$ and $\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$,
(vii) $\left|S_{i_{1} i_{2}}\right|=2$, and $S_{1 i_{1}}=\varnothing$, for all $i_{1}, i_{2} \notin\{1\}$.
(viii) $\left|S_{i_{1} i_{2}}\right|=3,\left|S_{i_{2} i_{3}}\right|=2,\left|S_{i_{1} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$ and $S_{1 i_{1}}=\varnothing$, for all $i_{1} \notin\{1\}$,
(ix) $\left|S_{i_{1} i_{2}}\right|=4,\left|S_{i_{1} i_{3}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$, and $S_{1 i_{1}}=\varnothing$, for all $i_{1} \notin\{1\}$,
(x) $\left|S_{1 i_{1}}\right|=\left|S_{i_{2} i_{3}}\right|=1$ and $S_{i_{1} i_{2} i_{3}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(xi) $S_{i_{1} i_{2}}=\varnothing,\left|S_{1 i_{1}}\right| \geq 0$ and $\left|S_{i_{1} i_{2} i_{3}}\right| \geq 0$, for all $i_{1}, i_{2} \notin\{1\}$ and for some unique $i_{3} \in\{2,3,4\}$.

Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=6$. Then either one of the sets $S_{t} ' s, 1 \leq t \leq 4$, say S_{1}, has three elements or two of the S_{t} 's, $1 \leq t \leq 4$, say S_{1} and S_{2}, have two elements, exactly.

In the first case, if $\left|S_{234}\right| \geq 3$, then the complement of $\Gamma_{2}(L)$ is isomorphic to U6.6b, one of the listed graphs in [5]. So it is not toroidal.

And if $\left|S_{234}\right|=2$ and $\left|S_{23}\right| \geq 1$, then the complement of $\Gamma_{2}(L)$ is contained in U6.6b, one of the listed graphs in [5]. Thus it is not toroidal.

So we may assume that $\left|S_{234}\right|=2$ and $S_{23}=S_{24}=S_{34}=\varnothing$. Then $\Gamma_{2}(L)$ contains a subgraph isomorphic to $K_{8} \backslash\left(K_{3} \cup K_{2}\right)$, which is toroidal (cf. [5, p.55]).

Now, suppose that $\left|S_{234}\right|=\left|S_{23}\right|=\left|S_{24}\right|=1$. Then the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$, one of the listed graphs in [5]. Thus it is not toroidal.

In addition, if $\left|S_{234}\right|=1$ and $\left|S_{23}\right|=2$, then the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$, one of the listed graphs in [5]. So it is not toroidal.

Also, if $\left|S_{234}\right|=\left|S_{23}\right|=1$ and $\left|S_{14}\right|=2$, then $\Gamma_{2}(L)$ contains a subgraph isomrphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

Therefore we may assume that $\left|S_{234}\right|=\left|S_{23}\right|=\left|S_{14}\right|=1$ and $S_{24}=S_{34}=\varnothing$. Then the complement of $\Gamma_{2}(L)$ contains $C 402$, one of the listed graphs in [5], which is toroidal (see Figure 16). In Figure 16, we have the vertices $a_{1}, a_{2}, a_{3} \in S_{1}, b \in S_{2}$, $c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}, s_{23} \in S_{23}$ and $s_{234} \in S_{234}$.

When $\left|S_{23}\right|=3$, one can easily find a copy of $K_{4,5}$ in the structure of the contraction of $\Gamma_{2}(L)$. Hence it is not toroidal.

Figure 16

Also, if $\left|S_{14}\right|=1$ and $\left|S_{23}\right|=2$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5] (see Figure 17). Thus it is not toroidal. In Figure 17, $a_{1}, a_{2}, a_{3} \in S_{1}, b \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}$ and $s_{23}, s_{23}^{\prime} \in S_{23}$.

Figure 17
In addition, if $\left|S_{23}\right|=2$ and $\left|S_{24}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$, one of the listed graphs in [5]. So it is not toroidal.

Hence we assume that $\left|S_{23}\right|=2$ and $S_{14}=S_{24}=S_{34}=S_{234}=\varnothing$. Then $\Gamma_{2}(L)$ is contained in $K_{8} \backslash\left(K_{3} . K_{2}\right),\left(K_{3} . K_{2}\right.$ is the union of K_{3} with K_{2} such that intersect in one vertex), which is toroidal (cf. [5, p.55]).

Now, suppose that $\left|S_{14}\right|=2$ and $\left|S_{23}\right|=\left|S_{24}\right|=1$. Then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

If $\left|S_{14}\right|=3$ and $\left|S_{23}\right|=1$, then one can find a copy of $K_{3,7}$ in the contraction of $\Gamma_{2}(L)$. So it is not toroidal.

Also, if $\left|S_{14}\right|=\left|S_{23}\right|=2$, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$. Hence it is not toroidal.

So we may assume that $\left|S_{14}\right|=2,\left|S_{23}\right|=1$ and $S_{234}=S_{24}=S_{34}=\varnothing$. Then the complement of $\Gamma_{2}(L)$ contains $C 603$, one of the listed graphs in [5]. Thus it is toroidal. To do this, in Figure 18, consider the vertices $a_{1}, a_{2} \in S_{1}, b \in S_{2}, c \in S_{3}$, $d \in S_{4}, s_{14}, s_{14}^{\prime} \in S_{14}$ and $s_{23} \in S_{23}$.

Figure 18
If $\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$, one of the listed graphs in [5]. So it is not toroidal.

Also, if $\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

Therefore we may assume that $\left|S_{12}\right|=\left|S_{23}\right|=\left|S_{34}\right|=1$ and $S_{234}=S_{14}=$ $S_{24}=\varnothing$. Then the complement of $\Gamma_{2}(L)$ contains $C 402$, one of the listed graphs in [5]. So it is toroidal.

In the second case, when $\left|S_{1}\right|=\left|S_{2}\right|=2$, if S_{34} has at least three elements, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$. Hence it is not toroidal.

Also, if $\left|S_{34}\right|=2$ and $\left|S_{12}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5]. So it is not toroidal.

Moreover, if $\left|S_{34}\right|=\left|S_{24}\right|=2$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if $\left|S_{34}\right|=2$ and $\left|S_{14}\right|=\left|S_{23}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

We may assume that $\left|S_{34}\right|=2,\left|S_{23}\right|=\left|S_{24}\right|=1,\left|S_{134} \geq 0\right|,\left|S_{234}\right| \geq 0$ and $S_{12}=S_{13}=S_{14}=\varnothing$. Then $\Gamma_{2}(L)$ is toroidal, since in Figure 19, we have the vertices $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{23} \in S_{23}, s_{24} \in S_{24}, s_{34}, s_{34}^{\prime} \in S_{34}$, $s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Also, we may assume that $\left|S_{34}\right|=2,\left|S_{13}\right|=\left|S_{23}\right|=1, S_{12}=S_{14}=S_{24}=\varnothing$, $\left|S_{134}\right| \geq 0$ and $\left|S_{234}\right| \geq 0$. Then $\Gamma_{2}(L)$ is toroidal, since in Figure 20, we have the vertices $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{13} \in S_{13}, s_{23} \in S_{23}, s_{34}, s_{34}^{\prime} \in S_{34}$, $s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Now, suppose that $\left|S_{134}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1$. Then the complement of the contraction of $\Gamma_{2}(L)$ is contained in $W 6.6 a$, one of the listed graphs in [5] (see Figure 21). So it is not toroidal. In Figure 21, we have $a_{1}, a_{2} \in S_{1}$,

Figure 19

Figure 20
$b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}, s_{34} \in S_{34}$ and $s_{134} \in S_{134}$.

Now, if $\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if $\left|S_{12}\right|=\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{34}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

Whenever $\left|S_{13}\right|=\left|S_{23}\right|=\left|S_{24}\right|=1$ and $S_{34}=S_{14}=\varnothing$, the complement of $\Gamma_{2}(L)$ contains a subgraph isomorphic to $C 416$, one of the listed graphs in [5] (see Fugure 22). Thus it is toroidal. In Figure 22, $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}$, $d \in S_{4}, s_{13} \in S_{13}, s_{23} \in S_{23}$ and $s_{24} \in S_{24}$.

So we may assume that $\left|S_{14}\right|=\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1,\left|S_{234}\right| \geq 0$ and

Figure 21

Figure 22
$S_{12}=S_{13}=S_{134}=\varnothing$. Then $\Gamma_{2}(L)$ is toroidal, since in Figure 23, we have the vertices $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}, s_{23} \in S_{23}, s_{24} \in S_{24}$, $s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.

Consider $\left|S_{24}\right|=3$ and $\left|S_{34}\right|=1$. Since $\Gamma_{2}(L)$ contains $E 6,2$, one of the listed graphs in [11], it is not toroidal.

When $\left|S_{24}\right|=2$ and $\left|S_{12}\right|=\left|S_{34}\right|=1, \Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

Now, we may assume that $\left|S_{23}\right|=\left|S_{24}\right|=2,\left|S_{34}\right|=1,\left|S_{234}\right| \geq 0$ and $S_{12}=$ $S_{13}=S_{14}=S_{134}=\varnothing$. Then $\Gamma_{2}(L)$ is toroidal, since in Figure 24, we have $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{23}, s_{23}^{\prime} \in S_{23}, s_{24}, s_{24}^{\prime} \in S_{24}, s_{34} \in S_{34}$ and $s_{234} \in S_{234}$.

If $\left|S_{14}\right|=1$ and $\left|S_{23}\right|=2$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$,

Figure 23

Figure 24
one of the listed graphs in [5]. So it is not toroidal.
We may assume that $\left|S_{23}\right|=\left|S_{24}\right|=2,\left|S_{12}\right| \geq 0,\left|S_{134}\right| \geq 0,\left|S_{234}\right| \geq 0$ and $S_{13}=S_{14}=S_{34}=\varnothing$. Then $\Gamma_{2}(L)$ is toroidal. To do this, in Figure 25, consider the vertices $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}, s_{23}, s_{23}^{\prime} \in S_{23}$, $s_{24}, s_{24}^{\prime} \in S_{24}, s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

As $\left|S_{24}\right| \geq 4$, the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{3,7}$. Hence it is not toroidal.

If $\left|S_{24}\right|=3$ and $\left|S_{14}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to $E 6,2$, one of the listed graphs in [11]. So it is not toroidal.

If $\left|S_{24}\right|=3$ and $\left|S_{23}\right|=\left|S_{134}\right|=1$, then the complement of the contraction of $\Gamma_{2}(L)$ contains $U 6.6 b$, one of the listed graphs in [5]. So it is not toroidal.

Now, consider $\left|S_{24}\right|=3,\left|S_{23}\right|=1, S_{13}=S_{14}=S_{34}=S_{134}=\varnothing,\left|S_{12}\right| \geq 0$

Figure 25
and $\left|S_{234}\right| \geq 0$. Then the graph $\Gamma_{2}(L)$, in Figure 26, is toroidal. In Figure 26, $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}, s_{23} \in S_{23}, s_{24}, s_{24}^{\prime}, s_{24}^{\prime \prime} \in S_{24}$ and $s_{234} \in S_{234}$.

Figure 26
If $\left|S_{12}\right|=2$ and $\left|S_{23}\right|=\left|S_{34}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if $\left|S_{12}\right|=2$ and $\left|S_{34}\right|=\left|S_{234}\right|=1$, then the complement of the contraction of $\Gamma_{2}(L)$ contains V6.5, one of the listed graphs in [5]. So it is not toroidal.

If $\left|S_{12}\right|=3$ and $\left|S_{34}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to $E 6,2$, one of the listed graphs in [11]. So it is not toroidal.

Now, we may assume that $\left|S_{12}\right|=2,\left|S_{34}\right|=1$ and $S_{134}=S_{234}=S_{13}=S_{14}=$
$S_{23}=S_{24}=\varnothing$. Then the complement of $\Gamma_{2}(L)$ contains $C 610$, one of the listed graphs in [5]. So it is toroidal, since in Figure 27, we have the vertices $a_{1}, a_{2} \in S_{1}$, $b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12}, s_{12}^{\prime} \in S_{12}$ and $s_{34} \in S_{34}$.

Figure 27
If $\left|S_{24}\right|=2$ and $\left|S_{14}\right|=\left|S_{23}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11]. Hence it is not toroidal.

If $\left|S_{14}\right|=\left|S_{24}\right|=2$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to $E 6,2$, one of the listed graphs in [11]. So it is not toroidal.

Suppose that $\left|S_{24}\right|=2,\left|S_{14}\right|=\left|S_{34}\right|=1, S_{12}=S_{13}=S_{23}=\varnothing,\left|S_{134}\right| \geq 0$ and $\left|S_{234}\right| \geq 0$. Then the graph $\Gamma_{2}(L)$, in Figure 28, is toroidal. In Figure 28, we have the vertices $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}, s_{24}, s_{24}^{\prime} \in S_{24}$, $s_{34} \in S_{34}, s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Figure 28
Moreover, if $\left|S_{12}\right|=\left|S_{13}\right|=\left|S_{23}\right|=\left|S_{34}\right|=1, S_{14}=S_{24}=\varnothing,\left|S_{134}\right| \geq 0$ and $\left|S_{234}\right| \geq 0$, then the graph $\Gamma_{2}(L)$ is toroidal, which is pictured in Figure 29. In Figure 29, $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}, s_{13} \in S_{13}, s_{23} \in S_{23}$, $s_{34} \in S_{34}, s_{134} \in S_{134}$ and $s_{234} \in S_{234}$.

Figure 29

Also, if $\left|S_{12}\right|=\left|S_{23}\right|=\left|S_{24}\right|=\left|S_{34}\right|=1, S_{13}=S_{14}=\varnothing,\left|S_{134}\right| \geq 0$ and $\left|S_{234}\right| \geq 0$, then the graph $\Gamma_{2}(L)$ is toroidal, which is pictured in Figure 30. In Figure 30, $a_{1}, a_{2} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}, s_{23} \in S_{23}, s_{24} \in S_{24}$, and $s_{34} \in S_{34}$.

Figure 30

Now, from the above discussion, we state some necessary and sufficient conditions for the toroidality of $\Gamma_{2}(L)$ in the next two theorems.

Theorem 2.6. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=6$ and $\left|S_{1}\right|=3$. Then $\Gamma_{2}(L)$ is toroidal if and only if one of the following statements holds:
(i) If $\left|S_{i_{1} i_{2} i_{3}}\right|=2$, then $S_{i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{1\}$,
(ii) If $\left|S_{1 i_{1}}\right|=1$, for some unique $i_{1} \in\{2,3,4\}$, then $\left|S_{i_{2} i_{3}}\right|=1$, for $\left\{i_{2}, i_{3}\right\}=$ $\{2,3,4\} \backslash\left\{i_{1}\right\}$ and $S_{i_{1} i_{4}}=\varnothing$, for all $i_{4} \in\left\{i_{2}, i_{3}\right\}$, and also $\left|S_{i_{1} i_{2} i_{3}}\right|=1$,
(iii) If $\left|S_{i_{1} i_{2}}\right|=2$, for some unique $i_{1}, i_{2} \in\{2,3,4\}$, then $S_{i_{3} i_{4}}=\varnothing$, for all $i_{3} \notin$ $\left\{1, i_{1}, i_{2}\right\}, i_{4} \in\left\{1, i_{1}, i_{2}\right\}$ and $S_{i_{1} i_{2} i_{3}}=\varnothing$,
(iv) If $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \in\{2,3,4\}$, then $\left|S_{i_{2} i_{3}}\right|=1$, for $\left\{i_{2}, i_{3}\right\}=$ $\{2,3,4\} \backslash\left\{i_{1}\right\}$ and $S_{i_{1} i_{4}}=\varnothing$, for all $i_{4} \in\left\{i_{2}, i_{3}\right\}$, and also $S_{i_{1} i_{2} i_{3}}=\varnothing$,
(v) If $\left|S_{1 i_{1}}\right|=1$, for some unique $i_{1} \in\{2,3,4\}$, then $\left|S_{i_{2} i_{3}}\right|=1$, for $\left\{i_{2}, i_{3}\right\}=$ $\{2,3,4\} \backslash\left\{i_{1}\right\}$ and $\left|S_{i_{1} i_{4}}\right|=1$, for some unique $i_{4} \in\left\{i_{2}, i_{3}\right\}$, and also $S_{1 i_{5}}=$ $S_{i_{1} i_{5}}=\varnothing$, for some unique $i_{5} \in\left\{i_{2}, i_{3}\right\} \backslash\left\{i_{4}\right\}$ and $S_{i_{1} i_{2} i_{3}}=\varnothing$.

Remark 2.7. Note that if $\bigcup_{t=1}^{4} S_{t}$ has six elements, $\left|S_{1}\right|=\left|S_{2}\right|=2$ and one of the following cases holds, then it is a question that whether $\Gamma_{2}(L)$ is toroidal or not.

Case 1. $\left|S_{23}\right|=2$ and $\left|S_{24}\right|=3$.
Case 2. $\left|S_{23}\right|=\left|S_{24}\right|=2$ and $\left|S_{34}\right|=\left|S_{134}\right|=1$.
Theorem 2.8. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=6$ and $\left|S_{1}\right|=\left|S_{2}\right|=2$, and also the cases which are mentioned in remark 2.7. do not hold. Then $\Gamma_{2}(L)$ is toroidal if and only if one of the following statements holds:
(i) $S_{12}=\varnothing$ and $\left|S_{i_{1} i_{2}}\right|=2$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{1} i_{3}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{3} \in\{1,2\}$, then $S_{i_{1} i_{4}}=S_{i_{2} i_{4}}=\varnothing$, for $i_{4} \in\{1,2\} \backslash\left\{i_{3}\right\}$,
(ii) $S_{12}=\varnothing$ and $\left|S_{i_{1} i_{2}}\right|=2$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{1 i_{3}}\right|=\left|S_{2 i_{3}}\right|=1$, for some unique $i_{3} \in\{3,4\}$, then $S_{1 i_{4}}=S_{2 i_{4}}=\varnothing$, for $i_{4} \notin\left\{1,2, i_{3}\right\}$,
(iii) $S_{i_{1} i_{2}}=\varnothing$, for $i_{1}, i_{2} \notin\{1,2\}$ and $\left|S_{i_{3} i_{4}}\right|=1$, for some unique $i_{3} \in\{1,2\}$ and for all $i_{4} \in\left\{i_{1}, i_{2}\right\}$. Also, if $\left|S_{i_{4} i_{5}}\right|=1$, for some unique $i_{4} \in\left\{i_{1}, i_{2}\right\}$ and for $i_{5} \in\{1,2\} \backslash\left\{i_{3}\right\}$, then $S_{i_{5} i_{6}}=\varnothing$, for $i_{6} \in\left\{i_{1}, i_{2}\right\} \backslash\left\{i_{4}\right\}$,
(iv) $S_{12}=\varnothing,\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$ and $\left|S_{i_{3} i_{4}}\right|=1$, for some unique $i_{3} \in$ $\{1,2\}$, for all $i_{4} \in\left\{i_{1}, i_{2}\right\}$. Also, if $\left|S_{i_{4} i_{5}}\right|=1$, for some unique $i_{4} \in\left\{i_{1}, i_{2}\right\}$, for $i_{5} \in\{1,2\} \backslash\left\{i_{3}\right\}$, then $S_{i_{5} i_{6}}=\varnothing$, for $i_{6} \in\left\{i_{1}, i_{2}\right\} \backslash\left\{i_{4}\right\}$ and $S_{i_{1} i_{2} i_{5}}=\varnothing$,
(v) $S_{12}=\varnothing$ and $\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{3} i_{4}}\right|=2$, for some unique $i_{3} \in\{1,2\}$ and for all $i_{4} \in\left\{i_{1}, i_{2}\right\}$, then $S_{i_{4} i_{5}}=\varnothing$, for $i_{5} \in\{1,2\} \backslash\left\{i_{3}\right\}$ and $S_{i_{1} i_{2} i_{5}}=\varnothing$,
(vi) $S_{i_{1} i_{2}}=\varnothing$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{3} i_{4}}\right|=2$, for some unique $i_{3} \in\{1,2\}$ and for all $i_{4} \in\left\{i_{1}, i_{2}\right\}$, then $S_{i_{4} i_{5}}=\varnothing$, for all $i_{4} \in\left\{i_{1}, i_{2}\right\}$ and for $i_{5} \in$ $\{1,2\} \backslash\left\{i_{3}\right\}$,
(vii) $S_{i_{1} i_{2}}=\varnothing$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{3} i_{4}}\right|=3$, for some unique $i_{3} \in\{1,2\}$ and for some unique $i_{4} \in\left\{i_{1}, i_{2}\right\}$, then $\left|S_{i_{3} i_{5}}\right|=1$, for $i_{5} \in\left\{i_{1}, i_{2}\right\} \backslash\left\{i_{4}\right\}$ and $S_{i_{1} i_{6}}=S_{i_{2} i_{6}}=S_{i_{1} i_{2} i_{6}}=\varnothing$, for $i_{6} \in\{1,2\} \backslash\left\{i_{3}\right\}$,
(viii) $\left|S_{12}\right|=2$. Also, if $\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$, then $S_{i_{1} i_{3}}=S_{i_{2} i_{3}}=S_{i_{1} i_{2} i_{3}}=$ \varnothing, for all $i_{3} \in\{1,2\}$,
(ix) $S_{12}=\varnothing$ and $\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{3} i_{4}}\right|=2$, for some unique $i_{3} \in\{1,2\}$, for some unique $i_{4} \in\left\{i_{1}, i_{2}\right\}$ and $\left|S_{i_{4} i_{5}}\right|=1$, for $i_{5} \in\{1,2\} \backslash\left\{i_{3}\right\}$, then $S_{1 i_{6}}=S_{2 i_{6}}=\varnothing$, for $i_{6} \in\left\{i_{1}, i_{2}\right\} \backslash\left\{i_{4}\right\}$,
(x) $\left|S_{12}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{3} i_{4}}\right|=1$, for all $i_{3} \in\{1,2\}$ and for some unique $i_{4} \in\left\{i_{1}, i_{2}\right\}$, then $S_{i_{3} i_{5}}=\varnothing$, for all $i_{3} \in\{1,2\}$ and for some unique $i_{5} \in\left\{i_{1}, i_{2}\right\} \backslash\left\{i_{4}\right\}$,
(xi) $\left|S_{12}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$. Also, if $\left|S_{i_{3} i_{4}}\right|=1$, for some unique $i_{3} \in\{1,2\}$ and for all $i_{4} \in\left\{i_{1}, i_{2}\right\}$, then $S_{i_{4} i_{5}}=\varnothing$, for $i_{5} \in\{1,2\} \backslash\left\{i_{3}\right\}$.

Lemma 2.9. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=7$ and $\left|S_{1}\right|=4$. If one of the following conditions holds, then $\Gamma_{2}(L)$ is not a toroidal graph.
(i) $\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=1$, for $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(ii) $\left|S_{1 i_{1}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{2}, i_{3} \notin\left\{1, i_{1}\right\}$.
(iii) $\left|S_{i_{1} i_{2} i_{3}}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(iv) $\left|S_{i_{1} i_{2} i_{3}}\right|=2$, for $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(v) $\left|S_{i_{1} i_{2}}\right|=2$, for some unique $i_{1}, i_{2} \notin\{1\}$.

Proof.
(i) If $\left|S_{234}\right| \geq 2$, then the contraction of $\Gamma_{2}(L)$ contains a subgraph isomorphic to $K_{4,5}$.
(ii) If S_{23}, S_{24} or S_{34} has at least two elements, then one can find a copy of $K_{4,5}$ in the structure of the contraction of $\Gamma_{2}(L)$.
(iii) If $\left|S_{234}\right|=1$ and S_{23}, S_{24} or S_{34} has one element, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
(iv) If $\left|S_{23}\right|=\left|S_{24}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
(v) If $\left|S_{12}\right|=\left|S_{34}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
In all of the above cases, $\Gamma_{2}(L)$ is not a toroidal graph.
Now, we may assume that S_{234} has at most one element and $S_{23}=S_{24}=S_{34}=$ \varnothing. In this situation, $\Gamma_{2}(L)$ is contained in $K_{8} \backslash\left(K_{3} \cup K_{2}\right)$. Hence it is a toroidal graph (cf. [5, p.55]). In addition, we assume that S_{34} has exactly one element. Then $S_{234}=S_{12}=S_{23}=S_{24}=\varnothing$. So $\Gamma_{2}(L)$ is contained in $K_{8} \backslash\left(K_{3} \cup K_{2}\right)$, which is toroidal (cf. [5, p.55]).

As a consequence of the above discussion and Lemma 2.9., one can easily check that the toroidality of the graph $\Gamma_{2}(L)$, when $\left|\bigcup_{t=1}^{4} S_{t}\right|=7$ and $\left|S_{1}\right|=4$.
Theorem 2.10. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=7$ and $\left|S_{1}\right|=4$. Then $\Gamma_{2}(L)$ is a toroidal graph if and only if one of the following conditions is satisfied:
(i) If $\left|S_{i_{1} i_{2} i_{3}}\right|=1$, then $S_{i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(ii) If $\left|S_{i_{1} i_{2}}\right|=1$, for some unique $i_{1}, i_{2} \notin\{1\}$, then $S_{i_{1} i_{2} i_{3}}=\varnothing$, for $i_{3} \notin\{1\}$ and $S_{1 i_{4}}=S_{i_{1} i_{4}}=S_{i_{2} i_{4}}=\varnothing$, for $i_{4} \notin\left\{i_{1}, i_{2}\right\}$.

Lemma 2.11. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=7,\left|S_{1}\right|=3$ and $\left|S_{2}\right|=2$. If one of the following conditions holds, then the graph $\Gamma_{2}(L)$ is not toroidal.
(i) $\left|S_{2 i_{1} i_{2}}\right| \geq 2$, for $i_{1}, i_{2} \notin\{1\}$.
(ii) $\left|S_{1 i_{1}}\right| \geq 3$, for some unique $i_{1} \notin\{2\}$.
(iii) $\left|S_{2 i_{1}}\right| \geq 2$, for some unique $i_{1} \notin\{1\}$.
(iv) $\left|S_{i_{1} i_{2}}\right| \geq 2$, for $i_{1}, i_{2} \notin\{1,2\}$.
(v) $\left|S_{2 i_{1} i_{2}}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$.
(vi) $\left|S_{2 i_{1} i_{2}}\right|=\left|S_{2 i_{3}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$ and for some unique $i_{3} \in\left\{i_{1}, i_{2}\right\}$.
(vii) $\left|S_{2 i_{1} i_{2}}\right|=1$ and $\left|S_{1 i_{3}}\right|=2$, for $i_{1}, i_{2} \notin\{1,2\}$ and for some unique $i_{3} \in\left\{i_{1}, i_{2}\right\}$.
(viii) $\left|S_{1 i_{1} i_{2}}\right|=\left|S_{1 i_{1}}\right|=\left|S_{2 i_{1}}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for some unique $i_{1}, i_{2} \in\{3,4\}$.
(ix) $\left|S_{i_{1} i_{2}}\right|=1$ and $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1}, i_{2} \in\{3,4\}$.
(x) $\left|S_{i_{1} i_{2}}\right|=1$ and $\left|S_{12}\right|=2$, for $i_{1}, i_{2} \notin\{1,2\}$.
(xi) $\left|S_{2 i_{1}}\right|=1$ and $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \in\{3,4\}$.
(xii) $\left|S_{i_{1} i_{2}}\right|=\left|S_{2 i_{3}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$ and for some unique $i_{3} \in\left\{i_{1}, i_{2}\right\}$.
(xiii) $\left|S_{2 i_{1}}\right|=\left|S_{2 i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$.
(xiv) $\left|S_{1 i_{1}}\right|=\left|S_{2 i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$.
(xv) $\left|S_{12}\right|=\left|S_{1 i_{1}}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for some unique $i_{1}, i_{2} \in\{3,4\}$.
(xvi) $\left|S_{12}\right|=\left|S_{i_{1} i_{2}}\right|=\left|S_{1 i_{1} i_{2}}\right|=1$, for $i_{1}, i_{2} \notin\{1,2\}$.

Proof.
(i) If $\left|S_{234}\right| \geq 2$, then the complement of $\Gamma_{2}(L)$ is contained in $V 6.5$, one of the listed graphs in [5].
(ii) If $\left|S_{13}\right| \geq 3$ or $\left|S_{14}\right| \geq 3$, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{3,7}$.
(iii) If $\left|S_{23}\right| \geq 2$ or $\left|S_{24}\right| \geq 2$, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$.
(iv) If $\left|S_{34}\right| \geq 2$, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$.
(v) If $\left|S_{234}\right|=\left|S_{34}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$, one of the listed graphs in [5].
(vi) If $\left|S_{234}\right|=\left|S_{24}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
(vii) If $\left|S_{234}\right|=1$ and $\left|S_{14}\right|=2$, then $\Gamma_{2}(L)$ contains a subgroph isomorphic to G_{3}, one of the listed graphs in [11].
(viii) If $\left|S_{134}\right|=\left|S_{13}\right|=\left|S_{23}\right|=\left|S_{34}\right|=1$, then the complement of the contraction of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
(ix) If $\left|S_{34}\right|=1$ and $\left|S_{14}\right|=2$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11].
(x) If $\left|S_{34}\right|=1$ and $\left|S_{12}\right|=2$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11].
(xi) If $\left|S_{24}\right|=1$ and $\left|S_{14}\right|=2$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11].
(xii) If $\left|S_{24}\right|=\left|S_{34}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
(xiii) If $\left|S_{23}\right|=\left|S_{24}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $W^{*} 7.5$, one of the listed graphs in [5], and so it is not toroidal (see Figure 31). Since in Figure 31, we have the vertices $a_{1}, a_{2}, a_{3} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}$, $s_{23} \in S_{23}$ and $s_{24} \in S_{24}$.

Figure 31
(xiv) If $\left|S_{13}\right|=\left|S_{24}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5].
(xv) If $\left|S_{12}\right|=\left|S_{13}\right|=\left|S_{34}\right|=1$, then $\Gamma_{2}(L)$ contains a subgraph isomorphic to G_{3}, one of the listed graphs in [11].
(xvi) If $\left|S_{12}\right|=\left|S_{34}\right|=\left|S_{134}\right|=1$, then $\Gamma_{2}(L)$ is contained in $S 5.6$, one of the listed graphs in [5] (see Figure 32). In Figure 32, we have the vertices $a_{1}, a_{2}, a_{3} \in S_{1}$, $b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{12} \in S_{12}$ and $s_{34} \in S_{34}$.

Figure 32

Moreover, we assume that S_{34} and S_{13} are singleton sets and $S_{12}=S_{23}=S_{24}=$ $S_{234}=\varnothing$. Then the complement of $\Gamma_{2}(L)$ contains $C 420$, one of the listed graphs in [5] (see Figure 33). In Figure 33, $a_{1}, a_{2}, a_{3} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}$, $s_{13} \in S_{13}$ and $s_{34} \in S_{34}$. So it is toroidal.

Figure 33
Also, if S_{12} and S_{34} are singleton sets and $S_{13}=S_{14}=S_{23}=S_{24}=S_{134}=$ $S_{234}=\varnothing$, then the complement of $\Gamma_{2}(L)$ contains $C 402$, one of the listed graphs in [5]. So it is toroidal. Now, consider S_{13} and S_{14} have exactly one element and $S_{23}=S_{24}=S_{34}=S_{234}=\varnothing$. Then the complement of $\Gamma_{2}(L)$ contains $C 517$, one of the listed graphs in [5] (see Figure 34). In Figure 34, we have $a_{1}, a_{2}, a_{3} \in S_{1}$, $b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}, s_{13} \in S_{13}$ and $s_{14} \in S_{14}$. So it is toroidal.

In the case that S_{14} and S_{24} have exactly one element and $S_{13}=S_{23}=S_{34}=$ $S_{234}=\varnothing$, the complement of $\Gamma_{2}(L)$ contains $C 403$, one of the listed graphs in [5] (see Figure 35). In Figure 35, we have the vertices $a_{1}, a_{2}, a_{3} \in S_{1}, b_{1}, b_{2} \in S_{2}$, $c \in S_{3}, d \in S_{4}, s_{14} \in S_{14}$ and $s_{24} \in S_{24}$. Therefore it is toroidal.

Now, if S_{234} and S_{14} have exactly one element and $S_{13}=S_{23}=S_{24}=S_{34}=\varnothing$,

Figure 34

Figure 35
then the complement of $\Gamma_{2}(L)$ contains $C 402$, one of the listed graphs in [5]. So it is toroidal.

Finally, if S_{14} has two elements and $S_{13}=S_{23}=S_{24}=S_{34}=S_{234}=\varnothing$, then the complement of $\Gamma_{2}(L)$ contains $C 603$, one of the listed graphs in [5]. So it is toroidal.
Remark 2.12. Note that if the size of the set $\bigcup_{t=1}^{4} S_{t}$ is seven, $\left|S_{1}\right|=3,\left|S_{2}\right|=2$ and one of the following cases holds, then it is a question that whether $\Gamma_{2}(L)$ is toroidal or not.

Case 1. $\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{234}\right|=1$.
Case 2. $\left|S_{13}\right|=1$ and $\left|S_{14}\right|=2$.
Case 3. $\left|S_{13}\right|=\left|S_{14}\right|=\left|S_{34}\right|=1$
Now, the next theorem follows immediately from Lemma 2.11 and Remark 2.12.

Theorem 2.13. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=7,\left|S_{1}\right|=3,\left|S_{2}\right|=2$, and also the cases which are mentioned in Remark 2.12. do not hold. Then the graph $\Gamma_{2}(L)$ is toroidal if and only if one of the following conditions holds:
(i) $\left|S_{i_{1} i_{2}}\right|=\left|S_{1 i_{1}}\right|=1$ and $S_{2 i_{1} i_{2}}=S_{12}=S_{1 i_{2}}=S_{2 i_{1}}=S_{2 i_{2}}=\varnothing$, for some unique $i_{1}, i_{2} \in\{3,4\}$,
(ii) $\left|S_{i_{1} i_{2}}\right|=\left|S_{12}\right|=1$ and $S_{1 i_{1} i_{2}}=S_{2 i_{1} i_{2}}=S_{1 i_{1}}=S_{1 i_{2}}=S_{2 i_{1}}=S_{2 i_{2}}=\varnothing$, for $i_{1}, i_{2} \notin\{1,2\}$,
(iii) $\left|S_{1 i_{1}}\right|=\left|S_{1 i_{2}}\right|=1$ and $S_{2 i_{1} i_{2}}=S_{2 i_{1}}=S_{2 i_{2}}=S_{i_{1} i_{2}}=\varnothing$, for $i_{1}, i_{2} \notin\{1,2\}$,
(iv) $\left|S_{1 i_{1}}\right|=\left|S_{2 i_{1}}\right|=1$ and $S_{2 i_{1} i_{2}}=S_{1 i_{2}}=S_{2 i_{2}}=S_{i_{1} i_{2}}=\varnothing$, for some unique $i_{1}, i_{2} \in\{3,4\}$,
(v) $\left|S_{2 i_{1} i_{2}}\right|=\left|S_{1 i_{1}}\right|=1$ and $S_{1 i_{2}}=S_{2 i_{1}}=S_{2 i_{2}}=S_{i_{1} i_{2}}=\varnothing$, for some unique $i_{1}, i_{2} \in\{3,4\}$,
(vi) $\left|S_{1 i_{1}}\right|=2$ and $S_{2 i_{1} i_{2}}=S_{1 i_{2}}=S_{2 i_{1}}=S_{2 i_{2}}=S_{i_{1} i_{2}}=\varnothing$, for some unique $i_{1}, i_{2} \in\{3,4\}$.

Lemma 2.14. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=7$ and $\left|S_{1}\right|=1$. If one of the following conditions holds, then the graph $\Gamma_{2}(L)$ is not toroidal.
(1) $\left|S_{i_{1} i_{2}}\right|=3$, for some unique $i_{1}, i_{2} \in\{2,3,4\}$.
(2) $\left|S_{1 i_{1}}\right|=2$, for some unique $i_{1} \in\{2,3,4\}$.
(3) $\left|S_{1 i_{1}}\right|=\left|S_{i_{2} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$.
(4) $\left|S_{1 i_{1}}\right|=1$ and $\left|S_{i_{1} i_{2}}\right|=2$, for some unique $i_{1}, i_{2} \in\{2,3,4\}$.
(5) $\left|S_{i_{1} i_{2}}\right|=2$ and $\left|S_{i_{1} i_{3}}\right|=1$, for $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(6) $\left|S_{i_{1} i_{2}}\right|=2$ and $\left|S_{1 i_{1} i_{3}}\right|=1$, for $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(7) $\left|S_{i_{1} i_{2}}\right|=2$ and $\left|S_{1 i_{2} i_{3}}\right|=1$, for $i_{1}, i_{2}, i_{3} \notin\{1\}$.
(8) $\left|S_{1 i_{1}}\right|=\left|S_{1 i_{2}}\right|=\left|S_{i_{1} i_{2}}\right|=1$, for some unique $i_{1}, i_{2} \in\{2,3,4\}$.
(9) $\left|S_{1 i_{1}}\right|=1$, for all $i_{1} \notin\{1\}$ and $\left|S_{1 i_{1} i_{2}}\right|=1$, for some unique $i_{1}, i_{2} \in\{2,3,4\}$.
(10) $\left|S_{1 i_{1}}\right|=\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=\left|S_{1 i_{2} i_{3}}\right|=1$, for some unique $i_{2}, i_{3} \in\{2,3,4\}$.

Proof. In (1) and (2), the contraction of $\Gamma_{2}(L)$ contains a subgraph isomorphic to $K_{3,7}$ and $K_{4,5}$, respectively. In (3), the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$. In (4) and (5), we can find a copy of G_{3} in the structure of $\Gamma_{2}(L)$. In (6) and (7), the complement of $\Gamma_{2}(L)$ is contained in $U 6.6 b$. In (8), the complement of the contraction of $\Gamma_{2}(L)$ is contained in $Z^{*} 8.3$, one of the listed graphs in [5] (see Figure 36). In Figure 36, we have $a \in S_{1}, b_{1}, b_{2} \in S_{2}, c_{1}, c_{2} \in S_{3}, d_{1}, d_{2} \in S_{4}, s_{13} \in S_{13}$, $s_{14} \in S_{14}$ and $s_{34} \in S_{34}$.

In (9), the complement of the contraction of $\Gamma_{2}(L)$ is contained in $Z^{*} 8.3$, one of the listed graphs in [5]. In (10), the complement of the contraction of $\Gamma_{2}(L)$ is contained in $W 6.6 a$, one of the listed graphs in [5]. In the all of the above cases, $\Gamma_{2}(L)$ is not toroidal.

In the sequel, we assume that S_{12}, S_{13} and S_{14} are singelton sets and $S_{23}=$ $S_{24}=S_{34}=S_{123}=S_{124}=S_{134}=\varnothing$. Then the graph $\Gamma_{2}(L)$ is toroidal, which is pictured in Figure 37. In Figure 37, $a \in S_{1}, b_{1}, b_{2} \in S_{2}, c_{1}, c_{2} \in S_{3}, d_{1}, d_{2} \in S_{4}$, $s_{12} \in S_{12}, s_{13} \in S_{13}$ and $s_{14} \in S_{14}$.
Also, consider S_{14}, S_{24} and S_{34} are singleton sets and $S_{12}=S_{13}=S_{23}=S_{123}=\varnothing$.

Figure 36

Figure 37

Figure 38

Then $\Gamma_{2}(L)$ is toroidal (see Figure 38). In Figure 38, we have the vertices $a \in S_{1}$, $b_{1}, b_{2} \in S_{2}, c_{1}, c_{2} \in S_{3}, d_{1}, d_{2} \in S_{4}, s_{14} \in S_{14}, s_{24} \in S_{24}$ and $s_{34} \in S_{34}$. We observe that if S_{23} has two elements and $S_{12}=S_{13}=S_{14}=S_{24}=S_{34}=S_{124}=S_{134}=\varnothing$, then the complement of $\Gamma_{2}(L)$ contains $C 603$, one of the listed graphs in [5]. So it is a toroidal graph. Finally, if S_{23}, S_{24} and S_{34} are singleton sets and $S_{12}=S_{13}=$ $S_{14}=\varnothing$, then the graph $\Gamma_{2}(L)$ is pictured in Figure 39, which is toroidal. In Figure 39 , we have the vertices $a \in S_{1}, b_{1}, b_{2} \in S_{2}, c_{1}, c_{2} \in S_{3}, d_{1}, d_{2} \in S_{4}, s_{23} \in S_{23}$, $s_{24} \in S_{24}$ and $s_{34} \in S_{34}$.

Figure 39

Theorem 2.15. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=7$ and $\left|S_{1}\right|=1$. Then $\Gamma_{2}(L)$ is toroidal if and only if one of the following conditions holds:
(i) If $\left|S_{1 i_{1}}\right|=1$, for all $i_{1} \notin\{1\}$, then $S_{i_{1} i_{2}}=S_{1 i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2} \notin\{1\}$,
(ii) If $\left|S_{1 i_{1}}\right|=\left|S_{i_{1} i_{2}}\right|=\left|S_{i_{1} i_{3}}\right|=1$, for some unique $i_{1}, i_{2}, i_{3} \in\{2,3,4\}$, then $S_{1 i_{2}}=S_{1 i_{3}}=S_{1 i_{2} i_{3}}=\varnothing$,
(iii) If $\left|S_{i_{1} i_{2}}\right|=2$, for some unique $i_{1}, i_{2} \in\{2,3,4\}$, then $S_{i_{1} i_{3}}=S_{i_{2} i_{3}}=S_{1 i_{1} i_{3}}=$ $S_{1 i_{2} i_{3}}=\varnothing$, for $i_{3} \notin\left\{1, i_{1}, i_{2}\right\}$ and $S_{1 i_{1}}=\varnothing$, for all $i_{1} \notin\{1\}$,
(iv) If $\left|S_{i_{1} i_{2}}\right|=1$, for all $i_{1}, i_{2} \notin\{1\}$, then $S_{1 i_{1}}=\varnothing$, for all $i_{1} \notin\{1\}$.

Theorem 2.16. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=8$. Then the graph $\Gamma_{2}(L)$ is toroidal if and only if one of the following conditions holds:
(i) There is S_{i} with $\left|S_{i}\right|=5$, for $1 \leq i \leq 4$ and $S_{i_{1} i_{2} i_{3}}=S_{i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{i\}$,
(ii) There are unique S_{i}, S_{j} with $\left|S_{i}\right|=4$ and $\left|S_{j}\right|=2$, for $1 \leq i, j \leq 4$ and $S_{i_{1} i_{2} i_{3}}=S_{i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{i\}, S_{i i_{1}}=\varnothing$, for $i_{1} \notin\{i, j\}$,
(iii) There are unique S_{i} and S_{j} with $\left|S_{i}\right|=\left|S_{j}\right|=3$, for $1 \leq i, j \leq 4$ and $S_{1 i_{1} i_{2}}=S_{j i_{1} i_{2}}=S_{i i_{1}}=S_{j i_{1}}=S_{i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2} \notin\{i, j\}$,
(iv) There are unique S_{i} and S_{j} with $\left|S_{i}\right|=3$ and $\left|S_{j}\right|=1$, for $1 \leq i, j \leq 4$ and $\left|S_{i i_{1}}\right|=1$, for some unique $i_{1} \in\{1,2,3,4\} \backslash\{i, j\}$. Also, $S_{i j}=S_{i i_{2}}=S_{i_{3} i_{4}}=$ $S_{i i_{2} j}=S_{i_{1} i_{2} j}=\varnothing$, for $i_{2} \notin\left\{i, j, i_{1}\right\}$ and for all $i_{3}, i_{4} \notin\{i\}$,
(v) For all $1 \leq i \leq 4,\left|S_{i}\right|=2$ and $S_{i_{1} i_{2} i_{3}}=S_{i_{1} i_{2}}=\varnothing$, for $1 \leq i_{1}, i_{2}, i_{3} \leq 4$.

Proof. If one of the above conditions holds, then one can easily check that $\Gamma_{2}(L)$ is toroidal.

Conversely, let $\Gamma_{2}(L)$ be a toroidal graph. Then we can consider the following cases:
(i) Assume that there is a unique S_{i}, say S_{1}, such that $\left|S_{1}\right|=5$. If S_{234} has at least one element, then we can find a copy of $K_{4,5}$ in the contraction of $\Gamma_{2}(L)$, which is impossible. Also, if S_{23}, S_{24} or S_{34} has at least one element, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5]. Thus it is not toroidal, which is again impossible. Hence for toroidality of $\Gamma_{2}(L)$, we assume that $S_{234}=S_{23}=S_{24}=S_{34}=\varnothing$. In this situation, $\Gamma_{2}(L)$ is contained in $K_{8} \backslash\left(K_{3} \cup K_{2}\right)$ (cf. [5, p.55]).
(ii) Assume that there are unique S_{i} and S_{j}, say S_{1} and S_{2}, such that $\left|S_{1}\right|=4$ and $\left|S_{2}\right|=2$. If S_{234}, S_{23} or S_{24} has at least one element, then we can find a copy of $K_{4,5}$ in the contraction of $\Gamma_{2}(L)$. So it is not toroidal, which is impossible. Also, if S_{13} or S_{14} has at least one element, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5]. Thus it is not toroidal, which is impossible. In addition, if S_{34} has at least one element, then the complement of $\Gamma_{2}(L)$ is contained in $W 7.7 d$, one of the listed graphs in [5] (see Figure 40). In Figure 40, $a_{1}, a_{2}, a_{3}, a_{4} \in S_{1}, b_{1}, b_{2} \in S_{2}, c \in S_{3}, d \in S_{4}$, $s_{34} \in S_{34}$. Thus it is not toroidal, which is impossible.

Figure 40
Therefore we assume that all of the above sets are empty. In this situation, $\Gamma_{2}(L)$ is contained in $K_{8} \backslash\left(K_{3} \cup K_{2}\right)$, which is toroidal (cf. [5, p.55]).
(iii) Assume that there are unique S_{i} and S_{j}, say S_{1} and S_{2}, such that $\left|S_{1}\right|=$ $\left|S_{2}\right|=3$. If S_{134} or S_{234} has at least one element, then the complement of
$\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5]. Thus it is not toroidal, which is impossible. Moreover if S_{13}, S_{14}, S_{23} or S_{24} has at least one element, then the contraction of $\Gamma_{2}(L)$ contains a subgraph isomorphic to $K_{4,5}$. It means that $\Gamma_{2}(L)$ is not toroidal, a contradiction. Also, if S_{34} has at least one element, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5]. Thus it is not toroidal, a contradiction. Therefore, for toroidality of $\Gamma_{2}(L)$, we assume that all of the above sets are empty. In this situation, $\Gamma_{2}(L)$ is contained in $K_{8} \backslash\left(K_{3} \cup K_{2}\right)$ (cf. [5, p.55]).
(iv) Assume that there are unique S_{i} and S_{j}, say S_{1} and S_{2}, such that $\left|S_{1}\right|=3$ and $\left|S_{2}\right|=1$. If S_{13} or S_{14} has at least two elements, then we can find a copy of $K_{3,7}$ in the contraction of $\Gamma_{2}(L)$, which is impossible. Also, if S_{12}, S_{23}, S_{24} or S_{34} has at least one element, then we can find a copy of $K_{4,5}$ in the contraction of $\Gamma_{2}(L)$, a contradiction. In addition, if S_{234} has at least one element, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.5$, one of the listed graphs in [5]. Thus it is not toroidal, a contradiction. In the case that $\left|S_{13}\right|=\left|S_{14}\right|=1$, the graph $\Gamma_{2}(L)$ contains G_{3}, one of the listed graphs in [11]. Hence it is not toroidal, which is contradiction. Finally, if $\left|S_{13}\right|=\left|S_{124}\right|=1$ or $\left|S_{14}\right|=\left|S_{123}\right|=1$, then the complement of $\Gamma_{2}(L)$ is contained in $S 5.6$, one of the listed graphs in [5]. Thus it is not toroidal, a contradiction. So, for the toroidality of $\Gamma_{2}(L)$, we assume that either S_{13} has at most one element by condition $S_{12}=S_{14}=S_{23}=S_{24}=S_{34}=S_{124}=S_{234}=\varnothing$, or S_{14} has at most one element by considering $S_{12}=S_{13}=S_{23}=S_{24}=S_{34}=S_{123}=S_{234}=\varnothing$. In these cases, the complement of $\Gamma_{2}(L)$ contains a subgraph isomorphic to C415, one of the listed graphs in [5], which is toroidal.
(v) Assume that S_{1}, S_{2}, S_{3} and S_{4} have two elements. As $S_{123}, S_{124}, S_{134}$ or S_{234} has at least one element, then $\Gamma_{2}(L)$ contains $K_{8} \backslash\left(K_{12} \cup 2 K_{2}\right)$. So it is not toroidal (see [4]). Also, if $S_{12}, S_{13}, S_{14}, S_{23}, S_{24}$ or S_{34} has at least one element, then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$. The contradiction is clear. Hence we assume that all of the above sets are empty. In this situation, $\Gamma_{2}(L)$ is isomorphic to a complete 4 -partite graph with all parts of size two, which is toroidal.

We end this paper with the following theorem.
Theorem 2.17. Suppose that $\left|\bigcup_{t=1}^{4} S_{t}\right|=9$. Then the graph $\Gamma_{2}(L)$ is toroidal if and only if there exists S_{i} with $\left|S_{i}\right|=6$, for $1 \leq i \leq 4$ and $S_{i_{1} i_{2} i_{3}}=S_{i_{1} i_{2}}=\varnothing$, for all $i_{1}, i_{2}, i_{3} \notin\{i\}$.
Proof. Let $\Gamma_{2}(L)$ be a toroidal graph and for all $1 \leq i \leq 4,\left|S_{i}\right| \neq 6$. Then the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{4,5}$. Hence it is not toroidal, which is impossible. Therefore we assume that there exists a unique S_{i} with $\left|S_{i}\right|=6$, for $1 \leq i \leq 4$. Now, if $\left|S_{234}\right| \geq 1$, then we can see a subgraph isomorphic to $K_{4,6}$ in the contraction of $\Gamma_{2}(L)$, which is not toroidal. When S_{23}, S_{24} or S_{34} has at least one element, the contraction of $\Gamma_{2}(L)$ contains a copy of $K_{3,7}$. It means that $\Gamma_{2}(L)$ is
not toroidal, which is impossible. Now, assume that all of the sets S_{23}, S_{24}, S_{34} and S_{234} are empty. Then the complement of $\Gamma_{2}(L)$ contains $C 603$, one of the listed graphs in [5], which is toroidal.

The converse statement is clear.
Acknowledgments. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.

References

[1] M. Afkhami and K. Khashyarmanesh, The comaximal graph of a lattice, Bull. Malays. Math. Sci. Soc., 37(2014), 261-269.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[3] A. Bouchet, Orientable and nonorientable genus of the complete bipartite graph, J. Combin. Theory Ser. B 24(1978), 24-33.
[4] F. Harary, P. C. Kainen, A. J. Schwenk and A. T. White, A maximal toroidal graph which is not a triangulation, Math.Scand. 33(1973), 108-112.
[5] A. L. Hlavacek, 9-vertex irreducible graphs for the torus, PhD. thesis, The university of Ohio State, 1997.
[6] H. R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319(2008), 1801-1808.
[7] J. B. Nation, Notes on Lattice Theory, Cambridge studies in advanced mathematics, Vol. 60, Cambridge University Press, Cambridge, 1998.
[8] G. Ringel, Map Color Theorem, Springer-Verlag, New York/Heidelberg, 1974.
[9] P. K. Sharma, S. M. Bhatwadekar, A note on graphical representation of rings, J. Algebra 176(1995), 124-127.
[10] H. J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320(2008), 2917-2933.
[11] D. Zeps, Förbidden minors for projective plane are free-toroidal or non-toroidal, IUUK-CE-ITI series (2009).

