
KYUNGPOOK Math. J. 56(2016), 683-714

http://dx.doi.org/10.5666/KMJ.2016.56.3.683

pISSN 1225-6951 eISSN 0454-8124

c© Kyungpook Mathematical Journal

When the Comaximal Graph of a Lattice is Toroidal

Mojgan Afkhami
Department of Mathematics, University of Neyshabur, P. O. Box 91136-899,
Neyshabur, Iran
e-mail : mojgan.afkhami@yahoo.com

Khadijeh Ahmad Javaheri and Kazem Khashyarmanesh∗

Department of Pure Mathematics, Internatinal Compus of Ferdowsi University of
Mashhad, P. O. Box 1159-91775, Mashhad, Iran
e-mail : javaheri1158kh@yahoo.com and khashyar@ipm.ir

Abstract. In this paper we investigate the toroidality of the comaximal graph of a finite

lattice.

1. Introduction

The comaximal graph of a commutative ring R was first defined in [9]. Also,
in [6] and [10], the authors studied several properties of the comaximal graph. Re-
cently, in [1], the comaximal graph of a lattice was defined and studied.

The comaximal graph of a lattice L = (L,∧,∨), denoted by Γ(L), is an undi-
rected graph with all elements of L being the vertices, and two distinct vertices a
and b are adjacent if and only if a∨ b = 1. In this paper, we study the finite lattices
L with toroidal comaximal graphs.

First we recall some definitions and notation on lattices and graphs.
Recall that a lattice is an algebra L = (L,∧,∨) satisfying the following condi-

tions: for all a, b, c ∈ L,

1. a ∧ a = a, a ∨ a = a,

2. a ∧ b = b ∧ a, a ∨ b = b ∨ a,

3. (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

4. a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.
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Note that in every lattice the equality a ∧ b = a always implies that a ∨ b = b.
Also, by [7, Theorem 2.1], one can define an order 6 on L as follows: For any
a, b ∈ L, we set a 6 b if and only if a ∧ b = a. Then (L,6) is an ordered set in
which every pair of elements has a greatest lower bound (g.l.b.) and a least upper
bound (l.u.b.). Conversely, let L be an ordered set such that, for every pair a, b ∈ L,
g.l.b.(a, b), l.u.b.(a, b) ∈ L. For each a and b in L, we define a ∧ b := g.l.b.(a, b) and
a ∨ b := l.u.b.(a, b). Then (L,∧,∨) is a lattice. A lattice L is said to be bounded if
there are elements 0 and 1 in L such that 0 ∧ a = 0 and a ∨ 1 = 1, for all a ∈ L.

Clearly, every finite lattice is bounded. Recall that in a partially ordered set
(P,6), we say that a covers b or b is covered by a, in notation b ≺ a, if and only
if b < a and there is no element p in P such that b < p < a. An element a in L
is called a co-atom if a ≺ 1. We denote the sets of all co-atoms in a lattice L by
C(L). Also, for an element a ∈ L, we set [a]l = {b ∈ L | b ≤ a}.

In a graph G, for two distinct vertices a and b in G, the notation a − b means
that a and b are adjacent. For a positive integer r, an r-partite graph is one whose
vertex-set can be partitioned into r subsets so that no edge has both ends in any
one subset. A complete r-partite graph is one in which each vertex is joined to every
vertex that is not in the same subset. The complete bipartite graph (2-partite graph)
with part sizes m and n is denoted by Km,n. A graph G is said to be contracted to
a graph H if there exists a sequence of elementary contractions which transforms G
into H, where an elementary contraction consists of deletion of a vertex or an edge
or the identification of two adjacent vertices. A subdivision of a graph is any graph
that can be obtained from the original graph by replacing edges by paths. A graph
is said to be planar if it can be drawn in the plane so that its edges intersect only
at their ends. A remarkable simple characterization of the planar graphs was given
by Kuratowski in 1930. Kuratowski’s Theorem says that a graph is planar if and
only if it contains no subdivision of K5 or K3,3 (cf. [2, p.153]).

By a surface we mean a connected compact 2-dimensional manifold without
boundary, that is a topological space such that each point has a neiborhood home-
omorphic to the open disc. It is well-known that every oriented compact surface is
homeomorphic to a sphere with g handles. This number g is a called the genus of
the surface. The torus can be though of as a sphere with one handle. This means
that the genus of torus is 1.
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A graph G is embeddable in a surface S if the vertices of G are assigned to
distinct points in S such that every edge of G is a simple arc in S connecting the
two vertices which are joined in G. If G can not be embedded in S, then G has at
least two edges intersecting at a point which is not a vertex of G. We say a graph G
is irreducible for a surface S if G does not embed in S, but any proper subgraph of
G embeds in S. A toroidal graph is a graph that can be embedded in a torus. Note
that the genus of a planar graph is zero. So the planar graph is not considered as a
toroidal graph. Also, a complete graph Kn is toroidal if n = 5, 6 or 7, and the only
toroidal complete bipartite graphs are K4,4 and K3,n, with n = 3, 4, 5, 6 (see [3] or
[8]).

2. Toroidal Ccomaximal Graph of a Lattice

In this paper, we assume that L is a finite lattice. The comaximal graph of a
lattice L, denoted by Γ(L), is an undirected graph with all elements of L being the
vertices, and two distinct vertices a and b are adjacent if and only if a ∨ b = 1 (see
[1]). We denote the induced subgraph of Γ(L) with vertex set L \ (J(L) ∪ {1}), by
Γ2(L), where J(L) is the set

⋂
m∈C(L)[m]l. It is easy to see that the vertex 1 is

adjacent to all vertices, also the vertices in J(L) are isolated vertices in the induced
subgraph with vertex set L \ {1}.

In this paper, we explore the toroidality of the graph Γ2(L). Clearly, by [1],
if Γ2(L) is planar, then |C(L)| ≤ 4. As |C(L)| = 1, then the graph Γ2(L) is
an empty graph. Note that when |C(L)| = 2, we have that Γ2(L) is a complete
bipartite graph. So Γ2(L) is planar if and only if either |[m1]l \ [m2]l| ≤ 2 or
|[m2]l \ [m1]l| ≤ 2, where C(L) = {m1,m2}. Also, one can easily see that Γ2(L) is
toroidal if and only if either |[m1]l \ [m2]l| = |[m2]l \ [m1]l| = 4 or |[m1]l \ [m2]l| = 3
and |[m2]l \ [m1]l| ∈ {3, 4, 5, 6}, where C(L) = {m1,m2}. We begin this section by
the following lemma.

Lemma 2.1. If Γ2(L) is toroidal, then the size of C(L) is at most seven.

Proof. Assume to the contrary that |C(L)| ≥ 8. Then the induced subgraph of
Γ2(L) with vertex set C(L) is isomorphic to K8, which is a contradiction. 2

By Lemma 2.1., it is sufficient to study the toroidality of the graph Γ2(L) in the
cases that C(L) has 3, 4, 5, 6 or 7 elements. In this paper, we discuss on the case
that |C(L)| = 4. First we begin by the following notation.

Notation. Suppose that |C(L)| = n, where n > 1. To simplify notation, for 1 ≤
i ≤ n, we denote the set [mi]

l, where mi ∈ C(L), by mi. We set St := mt\
⋃

i 6∈{t}mi,

where 1 ≤ i, t ≤ n. Also, St1t2...tk := (mt1 ∩ mt2 ∩ · · · ∩ mtk) \
⋃

i 6∈{t1,t2,...,tk}mi,
where 1 ≤ t1 < t2 < · · · < tk ≤ n. Note that each element in Si is adjacent to all
elements of Sj , for 1 ≤ i 6= j ≤ n, and also it is adjacent to all elements of St1t2...tk ,
where t1, . . . , tk 6∈ {i}.

Now, suppose that |
⋃4

t=1 St| ≥ 10. Then it is easy to find a subgraph isomorphic
to K3,7 in the contraction of Γ2(L), and so it is not toroidal. Hence we have the
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following lemma.

Lemma 2.2. If Γ2(L) is toroidal, then |
⋃4

t=1 St| ≤ 9.

In this section, we study the toroidality of the graph Γ2(L), whenever 5 ≤
|
⋃4

t=1 St| ≤ 9.

Lemma 2.3. Suppose that |
⋃4

t=1 St| = 5, |S1| = 2 and Γ2(L) is a toroidal graph.
Then one of the following conditions holds:

(i) |S1i1 | = 3, for some unique i1 ∈ {2, 3, 4} and |Si2i3 | = 1, Si1i2i3 = Si1i2 =
Si1i3 = ∅, for i2, i3 6∈ {1, i1}.

(ii) |S1i1 | = 2, for some unique i1 ∈ {2, 3, 4} and |Si2i3 | = 1, for all i2, i3 6∈ {1},
and also S1i4 = ∅, for all i4 6∈ {1, i1}.

(iii) |S1i1 | = 2, for some unique i1 6∈ {1} and |Si1i2 | = |Si2i3 | = 1, |S1i2 | ≥ 0,
S1i3 = Si1i3 = ∅, for some unique i2, i3 ∈ {2, 3, 4} \ {i1}.

(iv) |S1i1 | = |Si1i2 | = |Si1i3 | = 1, |Si2i3 | = 2, and S1i2 = S1i3 = ∅, for some
unique i1, i2, i3 ∈ {2, 3, 4}.

(v) |S1i1 | = |Si2i3 | = 1, |Si1i2 | = |Si1i3 | = 2, and S1i2 = S1i3 = ∅, for some
unique i1, i2, i3 ∈ {2, 3, 4}.

(vi) |S1i1 | = |S1i2 | = 1, S1i3 = ∅ and |Si1i2 | = |Si1i3 | = |Si2i3 | = 1, for some
unique i1, i2, i3 ∈ {2, 3, 4}.

(vii) |Si1i2 | = 2 and S1i1 = ∅, for all i1, i2 6∈ {1}.

(viii) |Si1i2 | = 3, |Si2i3 | = 2, |Si1i3 | = 1, for some unique i1, i2, i3 ∈ {2, 3, 4} and
S1i1 = ∅, for all i1 6∈ {1}.

(ix) |Si1i2 | = 4, |Si1i3 | = |Si2i3 | = 1, for some unique i1, i2, i3 ∈ {2, 3, 4} and
S1i1 = ∅, for all i1 6∈ {1}.

(x) |S1i1 | = |Si2i3 | = 1 and Si1i2i3 = ∅, for all i1, i2, i3 6∈ {1}.

(xi) Si1i2 = ∅, |S1i1 | ≥ 0, |Si1i2i3 | ≥ 0, for all i1, i2 6∈ {1} and for some unique
i3 ∈ {2, 3, 4}.

Proof. By our hypothesis, Γ2(L) is toroidal. If S234, S23, S24 and S34 are empty,
then Γ2(L) is planar, which is not toroidal. We know that, if the size of one of the
sets S23, S24 or S34 is at least five, then the contraction of Γ2(L) contains a copy of
K3,7, which is impossible. So the size of all of the above sets is at most four. We
have the following situations.

(i) We assume that |S14| = 4 and |S23| = 1. Then the contraction of Γ2(L)
contains a copy of K3,7. So it is not toroidal. Also, if |S14| = 3, |S23| = 1 and
S234 has at least one element, then the complement of Γ2(L) is contained in
U6.6b, one of the listed graphs in [5] (see Figure i). So Γ2(L) is not toroidal. In
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Figure 1, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s14, s
′
14, s

′′
14 ∈ S14 and s23 ∈ S23.

Moreover, if |S14| = 3, |S23| = |S34| = 1, then Γ2(L) contains E6, 2, one of
the listed graphs in [11] (see Figure 2). Hence it is not toroidal. In Figure 2,
a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s14, s

′
14, s

′′
14 ∈ S14, s23 ∈ S23 and s34 ∈ S34.

In addition, if |S14| = |S23| = 2, then the contraction of Γ2(L) contains a copy

bc

d

s34

s23

s14

s′14

s′′14

a1

a2

Figure 2

of K4,5. So it is not toroidal. Thus, we may assume that |S14| = 3, |S23| = 1,
S24 = S34 = S234 = ∅. In this situation, the complement of Γ2(L) contains
C415, one of the listed graphs in [5] (see Figure 3). So it is toroidal. In Figure
3, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s14, s

′
14, s

′′
14 ∈ S14 and s23 ∈ S23.

(ii) If |S14| = |S34| = 2 and |S23| = 1, then the graph Γ2(L) contains E6, 2,
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one of the listed graphs in [11]. So it is not toroidal. Also, if |S14| = 2 and
|S13| = |S23| = |S24| = 1, then the graph Γ2(L) contains G3, one of the listed
graphs in [11] (see Figure 4). Hence it is not toroidal. In Figure ii, a1, a2 ∈ S1,
b ∈ S2, c ∈ S3, d ∈ S4, s13 ∈ S13, s14, s

′
14 ∈ S14, s23 ∈ S23 and s24 ∈ S24.

a2 a1 s13

cs23 b

s24

s′14s14

d

Figure 4

We may assume that |S14| = 2, |S23| = |S24| = |S34| = 1 and S12 = S13 = ∅.
Then the graph Γ2(L), which is pictured in Figure 5, is toroidal. In Figure 5,
we have a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s14, s

′
14 ∈ S14, s23 ∈ S23, s24 ∈ S24

and s34 ∈ S34.

(iii) In view of the previous situations, we may assume that |S14| = 2, |S23| =
|S34| = 1, |S13| ≥ 0 and S12 = S24 = ∅. In this case, the graph Γ2(L),
in Figure 6, is toroidal. In Figure 6, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4,
s13 ∈ S13, s14, s

′
14 ∈ S14, s23 ∈ S23 and s34 ∈ S34.

(iv) If |S23| = 3 and |S14| = 1, then the contraction of Γ2(L) contains a copy of
K4,5, and so it is not toroidal. On the other hand, if |S23| = 2 and |S24| =
|S13| = |S14| = 1, then the graph Γ2(L) contains G3, one of the listed graphs
in [11]. Hence it is not toroidal. Also, if |S23| = |S34| = 2 and |S14| = 1, then
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Γ2(L) contains G3, one of the listed graphs in [11]. Hence it is not toroidal.
Therefore we may assume that |S23| = 2, |S14| = |S24| = |S34| = 1 and
S12 = S13 = ∅. Then the graph Γ2(L) is toroidal, which is pictured in Figure
7. In Figure 7, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s14 ∈ S14, s23, s

′
23 ∈ S23,

s24 ∈ S24 and s34 ∈ S34.

(v) In view of the previous situations, we may assume that |S34| = |S24| = 2,
|S23| = |S14| = 1 and S12 = S13 = ∅. In this case, the graph Γ2(L), which
is pictured in Figure 8, is toroidal. In Figure 8, we have a1, a2 ∈ S1, b ∈ S2,
c ∈ S3, d ∈ S4, s14 ∈ S14, s23 ∈ S23, s24, s

′
24 ∈ S24 and s34, s

′
34 ∈ S34.

(vi) If |S13| = |S14| = |S23| = |S24| = 1 and |S34| = 2, then the complement of
the contraction of Γ2(L) is contained in V 6.5, one of the listed graphs in [5]
(see Figure 9). So it is not toroidal. In Figure 9, we have a1, a2 ∈ S1, b ∈ S2,
c ∈ S3, d ∈ S4, s13 ∈ S13, s23 ∈ S23, s14 ∈ S14, s24 ∈ S24 and s34, s

′
34 ∈ S34.

If |S13| = |S14| = |S23| = |S24| = |S34| = 1 and |S234| ≥ 0, then S12 = ∅.
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In this situation, the graph Γ2(L), in Figure 10, is toroidal. In Figure 10,
a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s13 ∈ S13, s14 ∈ S14, s23 ∈ S23, s24 ∈ S24,
s34 ∈ S34 and s234 ∈ S234.

(vii) In view of the previous situations, we may assume that |S23| = |S24| = |S34| =
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2 and S12 = S13 = S14 = ∅. In this case, the graph Γ2(L), in Figure 11, is
toroidal. In Figure 11, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s23, s

′
23 ∈ S23,

s24, s
′
24 ∈ S24 and s34, s

′
34 ∈ S34.
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(viii) If |S34| = 3 and |S23| = |S14| = 1, then the graph Γ2(L) contains a sub-
graph isomorphic to E6, 2, one of the listed graphs in [11]. So it is not
toroidal. Therefore we may assume that |S34| = 3, |S24| = 2, |S23| = 1
and S12 = S13 = S14 = ∅. Then the graph Γ2(L) is pictured in Figure 12,
is toroidal. In Figure 12, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s23 ∈ S23,
s24, s

′
24 ∈ S24 and s34, s

′
34, s

′′
34 ∈ S34.

(ix) In view of the previous situations, we may assume that |S34| = 4, |S23| =
|S24| = 1 and S12 = S13 = S14 = ∅. In this case, the graph Γ2(L), in Figure
13, is toroidal. In Figure 13, a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s23 ∈ S23,
s24 ∈ S24 and s1, s2, s3, s4 ∈ S34.
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(x) If |S12| = |S13| = |S14| = |S23| = |S24| = |S34| = |S234| = 1, then the
complement of the contraction of Γ2(L) is contained in Y 7.4, one of the listed
graphs in [5] (see Figure 14). Thus it is not toroidal. In Figure 14, a1, a2 ∈ S1,
b ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12, s13 ∈ S13, s14 ∈ S14, s23 ∈ S23, s24 ∈ S24,
s34 ∈ S34 and s234 ∈ S234.
We may assume that |S12| = |S13| = |S14| = |S23| = |S24| = |S34| = 1 and
S234 = ∅. Then the graph Γ2(L), in Figure 15, is toroidal. In Figure 15,
a1, a2 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12, s13 ∈ S13, s14 ∈ S14, s23 ∈ S23

,s24 ∈ S24 and s234 ∈ S234.

(xi) When S23 = S24 = S34 = ∅, |S234| ≥ 0, |S12| ≥ 0, |S13| ≥ 0 and |S14| ≥ 0,
the graph Γ2(L) is isomorphic to a subdivision of K5, and so it is toroidal. 2
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Remark 2.4. Note that if the size of the set
⋃4

t=1 St is five, |S1| = 2 and one of the
following cases holds, then it is a question that whether Γ2(L) is toroidal or not.

Case 1. |S34| = 3 and |S23| = |S24| = 2.
Case 2. |S24| = |S34| = 3.
Case 3. |S24| = 2 and |S34| = 4.

Now, the next theorem follows immediately from Lemma 2.3 and Remark 2.4.

Theorem 2.5. Suppose that |
⋃4

t=1 St| = 5 and |S1| = 2, and also the cases which
are mentioned in Remark 2.4. do not hold. Then Γ2(L) is toroidal if and only if
one of the following statements holds:

(i) |S1i1 | = 3, for some unique i1 ∈ {2, 3, 4} and |Si2i3 | = 1, Si1i2i3 = Si1i2 =
Si1i3 = ∅, for i2, i3 6∈ {1, i1},
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(ii) |S1i1 | = 2, for some unique i1 ∈ {2, 3, 4} and |Si2i3 | = 1, for all i2, i3 6∈ {1},
and also S1i4 = ∅, for all i4 6∈ {1, i1},

(iii) |S1i1 | = 2, for some unique i1 ∈ {2, 3, 4}, and |Si1i2 | = |Si2i3 | = 1, |S1i2 | ≥ 0,
S1i3 = Si1i3 = ∅, for some unique i2, i3 /∈ {1, i1},

(iv) |S1i1 | = |Si1i2 | = |Si1i3 | = 1, |Si2i3 | = 2, and S1i2 = S1i3 = ∅, for some
unique i1, i2, i3 ∈ {2, 3, 4},

(v) |S1i1 | = |Si2i3 | = 1, |Si1i2 | = |Si1i3 | = 2, and S1i2 = S1i3 = ∅, for some
unique i1, i2, i3 ∈ {2, 3, 4},

(vi) |S1i1 | = |S1i2 | = 1, S1i3 = ∅ and |Si1i2 | = |Si1i3 | = |Si2i3 | = 1, for some
unique i1, i2, i3 ∈ {2, 3, 4},

(vii) |Si1i2 | = 2, and S1i1 = ∅, for all i1, i2 6∈ {1}.

(viii) |Si1i2 | = 3, |Si2i3 | = 2, |Si1i3 | = 1, for some unique i1, i2, i3 ∈ {2, 3, 4} and
S1i1 = ∅, for all i1 6∈ {1},

(ix) |Si1i2 | = 4, |Si1i3 | = |Si2i3 | = 1, for some unique i1, i2, i3 ∈ {2, 3, 4}, and
S1i1 = ∅, for all i1 6∈ {1},

(x) |S1i1 | = |Si2i3 | = 1 and Si1i2i3 = ∅, for all i1, i2, i3 6∈ {1}.

(xi) Si1i2 = ∅, |S1i1 | ≥ 0 and |Si1i2i3 | ≥ 0, for all i1, i2 6∈ {1} and for some unique
i3 ∈ {2, 3, 4}.

Suppose that |
⋃4

t=1 St| = 6. Then either one of the sets St
,s, 1 ≤ t ≤ 4, say S1,

has three elements or two of the St
,s, 1 ≤ t ≤ 4, say S1 and S2, have two elements,

exactly.
In the first case, if |S234| ≥ 3, then the complement of Γ2(L) is isomorphic to

U6.6b, one of the listed graphs in [5]. So it is not toroidal.
And if |S234| = 2 and |S23| ≥ 1, then the complement of Γ2(L) is contained in

U6.6b, one of the listed graphs in [5]. Thus it is not toroidal.
So we may assume that |S234| = 2 and S23 = S24 = S34 = ∅. Then Γ2(L)

contains a subgraph isomorphic to K8 \ (K3 ∪K2), which is toroidal (cf. [5, p.55]).
Now, suppose that |S234| = |S23| = |S24| = 1. Then the complement of Γ2(L)

is contained in U6.6b, one of the listed graphs in [5]. Thus it is not toroidal.
In addition, if |S234| = 1 and |S23| = 2, then the complement of Γ2(L) is

contained in U6.6b, one of the listed graphs in [5]. So it is not toroidal.
Also, if |S234| = |S23| = 1 and |S14| = 2, then Γ2(L) contains a subgraph

isomrphic to G3, one of the listed graphs in [11]. Hence it is not toroidal.
Therefore we may assume that |S234| = |S23| = |S14| = 1 and S24 = S34 = ∅.

Then the complement of Γ2(L) contains C402, one of the listed graphs in [5], which
is toroidal (see Figure 16). In Figure 16, we have the vertices a1, a2, a3 ∈ S1, b ∈ S2,
c ∈ S3, d ∈ S4, s14 ∈ S14, s23 ∈ S23 and s234 ∈ S234.

When |S23| = 3, one can easily find a copy of K4,5 in the structure of the
contraction of Γ2(L). Hence it is not toroidal.
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a1

a3

a2

b s23

c

d

s14

s234

Figure 16

Also, if |S14| = 1 and |S23| = 2, then the complement of Γ2(L) is contained in
S5.5, one of the listed graphs in [5] (see Figure 17). Thus it is not toroidal. In
Figure 17, a1, a2, a3 ∈ S1, b ∈ S2, c ∈ S3, d ∈ S4, s14 ∈ S14 and s23, s

′
23 ∈ S23.

s14

da1

a3a2

b c
s23

s′23

Figure 17

In addition, if |S23| = 2 and |S24| = 1, then the complement of Γ2(L) is con-
tained in U6.6b, one of the listed graphs in [5]. So it is not toroidal.

Hence we assume that |S23| = 2 and S14 = S24 = S34 = S234 = ∅. Then Γ2(L)
is contained in K8 \(K3.K2), (K3.K2 is the union of K3 with K2 such that intersect
in one vertex), which is toroidal (cf. [5, p.55]).

Now, suppose that |S14| = 2 and |S23| = |S24| = 1. Then Γ2(L) contains
a subgraph isomorphic to G3, one of the listed graphs in [11]. Hence it is not
toroidal.

If |S14| = 3 and |S23| = 1, then one can find a copy of K3,7 in the contraction
of Γ2(L). So it is not toroidal.
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Also, if |S14| = |S23| = 2, then the contraction of Γ2(L) contains a copy of K4,5.
Hence it is not toroidal.

So we may assume that |S14| = 2, |S23| = 1 and S234 = S24 = S34 = ∅. Then
the complement of Γ2(L) contains C603, one of the listed graphs in [5]. Thus it is
toroidal. To do this, in Figure 18, consider the vertices a1, a2 ∈ S1, b ∈ S2, c ∈ S3,
d ∈ S4, s14, s

′
14 ∈ S14 and s23 ∈ S23.

s14 a1 a3

a2d s′14

b s23 c

Figure 18

If |S23| = |S24| = |S34| = 1, then the complement of Γ2(L) is contained in U6.6b,
one of the listed graphs in [5]. So it is not toroidal.

Also, if |S13| = |S14| = |S23| = |S24| = 1, then Γ2(L) contains a subgraph
isomorphic to G3, one of the listed graphs in [11]. Hence it is not toroidal.

Therefore we may assume that |S12| = |S23| = |S34| = 1 and S234 = S14 =
S24 = ∅. Then the complement of Γ2(L) contains C402, one of the listed graphs in
[5]. So it is toroidal.

In the second case, when |S1| = |S2| = 2, if S34 has at least three elements,
then the contraction of Γ2(L) contains a copy of K4,5. Hence it is not toroidal.

Also, if |S34| = 2 and |S12| = 1, then the complement of Γ2(L) is contained in
S5.5, one of the listed graphs in [5]. So it is not toroidal.

Moreover, if |S34| = |S24| = 2, then Γ2(L) contains a subgraph isomorphic to
G3, one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if |S34| = 2 and |S14| = |S23| = 1, then Γ2(L) contains a subgraph
isomorphic to G3, one of the listed graphs in [11]. Hence it is not toroidal.

We may assume that |S34| = 2, |S23| = |S24| = 1, |S134 ≥ 0|, |S234| ≥ 0 and
S12 = S13 = S14 = ∅. Then Γ2(L) is toroidal, since in Figure 19, we have the
vertices a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s23 ∈ S23, s24 ∈ S24, s34, s

′
34 ∈ S34,

s134 ∈ S134 and s234 ∈ S234.
Also, we may assume that |S34| = 2, |S13| = |S23| = 1, S12 = S14 = S24 = ∅,

|S134| ≥ 0 and |S234| ≥ 0. Then Γ2(L) is toroidal, since in Figure 20, we have the
vertices a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s13 ∈ S13, s23 ∈ S23, s34, s

′
34 ∈ S34,

s134 ∈ S134 and s234 ∈ S234.
Now, suppose that |S134| = |S14| = |S23| = |S24| = |S34| = 1. Then the

complement of the contraction of Γ2(L) is contained in W6.6a, one of the listed
graphs in [5] (see Figure 21). So it is not toroidal. In Figure 21, we have a1, a2 ∈ S1,
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d

d

s24

s23

s234 s134
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Figure 19
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a2

s34

s13
s134

s′34
c c

s234

s23

d d

b1

b2

Figure 20

b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s14 ∈ S14, s23 ∈ S23, s24 ∈ S24, s34 ∈ S34 and
s134 ∈ S134.

Now, if |S13| = |S14| = |S23| = |S24| = 1, then Γ2(L) contains a subgraph
isomorphic to G3, one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if |S12| = |S14| = |S23| = |S34| = 1, then Γ2(L) contains a subgraph
isomorphic to G3, one of the listed graphs in [11]. Hence it is not toroidal.

Whenever |S13| = |S23| = |S24| = 1 and S34 = S14 = ∅, the complement of
Γ2(L) contains a subgraph isomorphic to C416, one of the listed graphs in [5] (see
Fugure 22). Thus it is toroidal. In Figure 22, a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3,
d ∈ S4, s13 ∈ S13, s23 ∈ S23 and s24 ∈ S24.

So we may assume that |S14| = |S23| = |S24| = |S34| = 1, |S234| ≥ 0 and
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s34

s23 − s14d

b2b1 − s134

s24

a1 a2

c

Figure 21

b1

s24

b2

c

d

a1

s13

s23

a2

Figure 22

S12 = S13 = S134 = ∅. Then Γ2(L) is toroidal, since in Figure 23, we have the
vertices a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s14 ∈ S14, s23 ∈ S23, s24 ∈ S24,
s34 ∈ S34 and s234 ∈ S234.

Consider |S24| = 3 and |S34| = 1. Since Γ2(L) contains E6, 2, one of the listed
graphs in [11], it is not toroidal.

When |S24| = 2 and |S12| = |S34| = 1, Γ2(L) contains a subgraph isomorphic
to G3, one of the listed graphs in [11]. Hence it is not toroidal.

Now, we may assume that |S23| = |S24| = 2, |S34| = 1, |S234| ≥ 0 and S12 =
S13 = S14 = S134 = ∅. Then Γ2(L) is toroidal, since in Figure 24, we have
a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s23, s

′
23 ∈ S23, s24, s

′
24 ∈ S24, s34 ∈ S34 and

s234 ∈ S234.

If |S14| = 1 and |S23| = 2, then the complement of Γ2(L) is contained in S5.5,



When the Comaximal Graph of a Lattice is Toroidal 699

a1

a1

a2

a2

s34

s23 s14

s234s24

c c

d d

b1

b2

Figure 23

a1

a1

a2

a2

s24

s23

s34

s′23

s234s′24

c c

d d

b1

b2

Figure 24

one of the listed graphs in [5]. So it is not toroidal.
We may assume that |S23| = |S24| = 2, |S12| ≥ 0, |S134| ≥ 0, |S234| ≥ 0 and

S13 = S14 = S34 = ∅. Then Γ2(L) is toroidal. To do this, in Figure 25, consider
the vertices a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12, s23, s

′
23 ∈ S23,

s24, s
′
24 ∈ S24, s134 ∈ S134 and s234 ∈ S234.

As |S24| ≥ 4, the contraction of Γ2(L) contains a copy of K3,7. Hence it is not
toroidal.

If |S24| = 3 and |S14| = 1, then Γ2(L) contains a subgraph isomorphic to E6, 2,
one of the listed graphs in [11]. So it is not toroidal.

If |S24| = 3 and |S23| = |S134| = 1, then the complement of the contraction of
Γ2(L) contains U6.6b, one of the listed graphs in [5]. So it is not toroidal.

Now, consider |S24| = 3, |S23| = 1, S13 = S14 = S34 = S134 = ∅, |S12| ≥ 0
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Figure 25

and |S234| ≥ 0 . Then the graph Γ2(L), in Figure 26, is toroidal. In Figure 26,
a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12, s23 ∈ S23, s24, s

′
24, s

′′
24 ∈ S24 and

s234 ∈ S234.

a1

a1

a2

a2

s′24
s′′24

s12

s23

s234

s24

c c

d d

b1

b2

Figure 26

If |S12| = 2 and |S23| = |S34| = 1, then Γ2(L) contains a subgraph isomorphic
to G3, one of the listed graphs in [11]. Hence it is not toroidal.

In addition, if |S12| = 2 and |S34| = |S234| = 1, then the complement of the
contraction of Γ2(L) contains V 6.5, one of the listed graphs in [5]. So it is not
toroidal.

If |S12| = 3 and |S34| = 1, then Γ2(L) contains a subgraph isomorphic to E6, 2,
one of the listed graphs in [11]. So it is not toroidal.

Now, we may assume that |S12| = 2, |S34| = 1 and S134 = S234 = S13 = S14 =
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S23 = S24 = ∅. Then the complement of Γ2(L) contains C610, one of the listed
graphs in [5]. So it is toroidal, since in Figure 27, we have the vertices a1, a2 ∈ S1,
b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s12, s

′
12 ∈ S12 and s34 ∈ S34.

a1 s′12

a2

s12 b1

b2

d cs34

Figure 27

If |S24| = 2 and |S14| = |S23| = 1, then Γ2(L) contains a subgraph isomorphic
to G3, one of the listed graphs in [11]. Hence it is not toroidal.

If |S14| = |S24| = 2, then Γ2(L) contains a subgraph isomorphic to E6, 2, one
of the listed graphs in [11]. So it is not toroidal.

Suppose that |S24| = 2, |S14| = |S34| = 1, S12 = S13 = S23 = ∅, |S134| ≥ 0
and |S234| ≥ 0. Then the graph Γ2(L), in Figure 28, is toroidal. In Figure 28, we
have the vertices a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s14 ∈ S14, s24, s

′
24 ∈ S24,

s34 ∈ S34, s134 ∈ S134 and s234 ∈ S234.

b1

b1

b2

b2

s34

s134

s′24

s24

s234

s14

c c

a1

a2

d

d

Figure 28

Moreover, if |S12| = |S13| = |S23| = |S34| = 1, S14 = S24 = ∅, |S134| ≥ 0 and
|S234| ≥ 0, then the graph Γ2(L) is toroidal, which is pictured in Figure 29. In
Figure 29, a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12, s13 ∈ S13, s23 ∈ S23,
s34 ∈ S34, s134 ∈ S134 and s234 ∈ S234.
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Figure 29

Also, if |S12| = |S23| = |S24| = |S34| = 1, S13 = S14 = ∅, |S134| ≥ 0 and
|S234| ≥ 0, then the graph Γ2(L) is toroidal, which is pictured in Figure 30. In
Figure 30, a1, a2 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12, s23 ∈ S23, s24 ∈ S24,
and s34 ∈ S34.
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a2

a2

s24

s23

s12

s34

c c

d d

b1

b2

Figure 30

Now, from the above discussion, we state some necessary and sufficient condi-
tions for the toroidality of Γ2(L) in the next two theorems.

Theorem 2.6. Suppose that |
⋃4

t=1 St| = 6 and |S1| = 3. Then Γ2(L) is toroidal if
and only if one of the following statements holds:

(i) If |Si1i2i3 | = 2, then Si1i2 = ∅, for all i1, i2, i3 6∈ {1},
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(ii) If |S1i1 | = 1, for some unique i1 ∈ {2, 3, 4}, then |Si2i3 | = 1, for {i2, i3} =
{2, 3, 4} \ {i1} and Si1i4 = ∅, for all i4 ∈ {i2, i3}, and also |Si1i2i3 | = 1,

(iii) If |Si1i2 | = 2, for some unique i1, i2 ∈ {2, 3, 4}, then Si3i4 = ∅, for all i3 6∈
{1, i1, i2}, i4 ∈ {1, i1, i2} and Si1i2i3 = ∅,

(iv) If |S1i1 | = 2, for some unique i1 ∈ {2, 3, 4}, then |Si2i3 | = 1, for {i2, i3} =
{2, 3, 4} \ {i1} and Si1i4 = ∅, for all i4 ∈ {i2, i3}, and also Si1i2i3 = ∅,

(v) If |S1i1 | = 1, for some unique i1 ∈ {2, 3, 4}, then |Si2i3 | = 1, for {i2, i3} =
{2, 3, 4} \ {i1} and |Si1i4 | = 1, for some unique i4 ∈ {i2, i3}, and also S1i5 =
Si1i5 = ∅, for some unique i5 ∈ {i2, i3} \ {i4} and Si1i2i3 = ∅.

Remark 2.7. Note that if
⋃4

t=1 St has six elements, |S1| = |S2| = 2 and one of the
following cases holds, then it is a question that whether Γ2(L) is toroidal or not.

Case 1. |S23| = 2 and |S24| = 3.
Case 2. |S23| = |S24| = 2 and |S34| = |S134| = 1.

Theorem 2.8. Suppose that |
⋃4

t=1 St| = 6 and |S1| = |S2| = 2, and also the cases
which are mentioned in remark 2.7. do not hold. Then Γ2(L) is toroidal if and only
if one of the following statements holds:

(i) S12 = ∅ and |Si1i2 | = 2, for i1, i2 6∈ {1, 2}. Also, if |Si1i3 | = |Si2i3 | = 1, for
some unique i3 ∈ {1, 2}, then Si1i4 = Si2i4 = ∅, for i4 ∈ {1, 2} \ {i3},

(ii) S12 = ∅ and |Si1i2 | = 2, for i1, i2 6∈ {1, 2}. Also, if |S1i3 | = |S2i3 | = 1, for
some unique i3 ∈ {3, 4}, then S1i4 = S2i4 = ∅, for i4 6∈ {1, 2, i3},

(iii) Si1i2 = ∅, for i1, i2 6∈ {1, 2} and |Si3i4 | = 1, for some unique i3 ∈ {1, 2} and
for all i4 ∈ {i1, i2}. Also, if |Si4i5 | = 1, for some unique i4 ∈ {i1, i2} and for
i5 ∈ {1, 2} \ {i3}, then Si5i6 = ∅, for i6 ∈ {i1, i2} \ {i4},

(iv) S12 = ∅, |Si1i2 | = 1, for i1, i2 6∈ {1, 2} and |Si3i4 | = 1, for some unique i3 ∈
{1, 2}, for all i4 ∈ {i1, i2}. Also, if |Si4i5 | = 1, for some unique i4 ∈ {i1, i2},
for i5 ∈ {1, 2} \ {i3}, then Si5i6 = ∅, for i6 ∈ {i1, i2} \ {i4} and Si1i2i5 = ∅,

(v) S12 = ∅ and |Si1i2 | = 1, for i1, i2 6∈ {1, 2}. Also, if |Si3i4 | = 2, for some unique
i3 ∈ {1, 2} and for all i4 ∈ {i1, i2}, then Si4i5 = ∅, for i5 ∈ {1, 2} \ {i3} and
Si1i2i5 = ∅,

(vi) Si1i2 = ∅, for i1, i2 6∈ {1, 2}. Also, if |Si3i4 | = 2, for some unique i3 ∈ {1, 2}
and for all i4 ∈ {i1, i2}, then Si4i5 = ∅, for all i4 ∈ {i1, i2} and for i5 ∈
{1, 2} \ {i3},

(vii) Si1i2 = ∅, for i1, i2 6∈ {1, 2}. Also, if |Si3i4 | = 3, for some unique i3 ∈ {1, 2}
and for some unique i4 ∈ {i1, i2}, then |Si3i5 | = 1, for i5 ∈ {i1, i2} \ {i4} and
Si1i6 = Si2i6 = Si1i2i6 = ∅, for i6 ∈ {1, 2} \ {i3},

(viii) |S12| = 2. Also, if |Si1i2 | = 1, for i1, i2 6∈ {1, 2}, then Si1i3 = Si2i3 = Si1i2i3 =
∅, for all i3 ∈ {1, 2},
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(ix) S12 = ∅ and |Si1i2 | = 1, for i1, i2 6∈ {1, 2}. Also, if |Si3i4 | = 2, for some unique
i3 ∈ {1, 2}, for some unique i4 ∈ {i1, i2} and |Si4i5 | = 1, for i5 ∈ {1, 2} \ {i3},
then S1i6 = S2i6 = ∅, for i6 ∈ {i1, i2} \ {i4},

(x) |S12| = |Si1i2 | = 1, for i1, i2 6∈ {1, 2}. Also, if |Si3i4 | = 1, for all i3 ∈ {1, 2}
and for some unique i4 ∈ {i1, i2}, then Si3i5 = ∅, for all i3 ∈ {1, 2} and for
some unique i5 ∈ {i1, i2} \ {i4},

(xi) |S12| = |Si1i2 | = 1, for i1, i2 6∈ {1, 2}. Also, if |Si3i4 | = 1, for some unique
i3 ∈ {1, 2} and for all i4 ∈ {i1, i2}, then Si4i5 = ∅, for i5 ∈ {1, 2} \ {i3}.

Lemma 2.9. Suppose that |
⋃4

t=1 St| = 7 and |S1| = 4. If one of the following
conditions holds, then Γ2(L) is not a toroidal graph.

(i) |Si1i2 | = |Si1i3 | = 1, for i1, i2, i3 6∈ {1}.

(ii) |S1i1 | = |Si2i3 | = 1, for some unique i2, i3 6∈ {1, i1}.

(iii) |Si1i2i3 | = |Si1i2 | = 1, for some unique i1, i2, i3 6∈ {1}.

(iv) |Si1i2i3 | = 2, for i1, i2, i3 6∈ {1}.

(v) |Si1i2 | = 2, for some unique i1, i2 6∈ {1}.

Proof.

(i) If |S234| ≥ 2, then the contraction of Γ2(L) contains a subgraph isomorphic
to K4,5.

(ii) If S23, S24 or S34 has at least two elements, then one can find a copy of K4,5

in the structure of the contraction of Γ2(L).

(iii) If |S234| = 1 and S23, S24 or S34 has one element, then the complement of
Γ2(L) is contained in S5.5, one of the listed graphs in [5].

(iv) If |S23| = |S24| = 1, then the complement of Γ2(L) is contained in S5.5, one
of the listed graphs in [5].

(v) If |S12| = |S34| = 1, then the complement of Γ2(L) is contained in S5.5, one
of the listed graphs in [5].

In all of the above cases, Γ2(L) is not a toroidal graph. 2

Now, we may assume that S234 has at most one element and S23 = S24 = S34 =
∅. In this situation, Γ2(L) is contained in K8 \ (K3 ∪K2). Hence it is a toroidal
graph (cf. [5, p.55]). In addition, we assume that S34 has exactly one element.
Then S234 = S12 = S23 = S24 = ∅. So Γ2(L) is contained in K8 \ (K3 ∪K2), which
is toroidal (cf. [5, p.55]).

As a consequence of the above discussion and Lemma 2.9., one can easily check
that the toroidality of the graph Γ2(L), when |

⋃4
t=1 St| = 7 and |S1| = 4.

Theorem 2.10. Suppose that |
⋃4

t=1 St| = 7 and |S1| = 4. Then Γ2(L) is a toroidal
graph if and only if one of the following conditions is satisfied:
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(i) If |Si1i2i3 | = 1, then Si1i2 = ∅, for all i1, i2, i3 6∈ {1}.

(ii) If |Si1i2 | = 1, for some unique i1, i2 6∈ {1}, then Si1i2i3 = ∅, for i3 6∈ {1} and
S1i4 = Si1i4 = Si2i4 = ∅, for i4 6∈ {i1, i2}.

Lemma 2.11. Suppose that |
⋃4

t=1 St| = 7, |S1| = 3 and |S2| = 2. If one of the
following conditions holds, then the graph Γ2(L) is not toroidal.

(i) |S2i1i2 | ≥ 2, for i1, i2 6∈ {1}.

(ii) |S1i1 | ≥ 3, for some unique i1 6∈ {2}.

(iii) |S2i1 | ≥ 2, for some unique i1 6∈ {1}.

(iv) |Si1i2 | ≥ 2, for i1, i2 6∈ {1, 2}.

(v) |S2i1i2 | = |Si1i2 | = 1, for i1, i2 6∈ {1, 2}.

(vi) |S2i1i2 | = |S2i3 | = 1, for i1, i2 6∈ {1, 2} and for some unique i3 ∈ {i1, i2}.

(vii) |S2i1i2 | = 1 and |S1i3 | = 2, for i1, i2 6∈ {1, 2} and for some unique i3 ∈ {i1, i2}.

(viii) |S1i1i2 | = |S1i1 | = |S2i1 | = |Si1i2 | = 1, for some unique i1, i2 ∈ {3, 4}.

(ix) |Si1i2 | = 1 and |S1i1 | = 2, for some unique i1, i2 ∈ {3, 4}.

(x) |Si1i2 | = 1 and |S12| = 2, for i1, i2 6∈ {1, 2}.

(xi) |S2i1 | = 1 and |S1i1 | = 2, for some unique i1 ∈ {3, 4}.

(xii) |Si1i2 | = |S2i3 | = 1, for i1, i2 6∈ {1, 2} and for some unique i3 ∈ {i1, i2}.

(xiii) |S2i1 | = |S2i2 | = 1, for i1, i2 6∈ {1, 2}.

(xiv) |S1i1 | = |S2i2 | = 1, for i1, i2 6∈ {1, 2}.

(xv) |S12| = |S1i1 | = |Si1i2 | = 1, for some unique i1, i2 ∈ {3, 4}.

(xvi) |S12| = |Si1i2 | = |S1i1i2 | = 1, for i1, i2 6∈ {1, 2}.

Proof.

(i) If |S234| ≥ 2, then the complement of Γ2(L) is contained in V 6.5, one of the
listed graphs in [5].

(ii) If |S13| ≥ 3 or |S14| ≥ 3, then the contraction of Γ2(L) contains a copy of
K3,7.

(iii) If |S23| ≥ 2 or |S24| ≥ 2, then the contraction of Γ2(L) contains a copy of
K4,5.

(iv) If |S34| ≥ 2, then the contraction of Γ2(L) contains a copy of K4,5.

(v) If |S234| = |S34| = 1, then the complement of Γ2(L) is contained in U6.6b, one
of the listed graphs in [5].
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(vi) If |S234| = |S24| = 1, then the complement of Γ2(L) is contained in S5.5, one
of the listed graphs in [5].

(vii) If |S234| = 1 and |S14| = 2, then Γ2(L) contains a subgroph isomorphic to G3,
one of the listed graphs in [11].

(viii) If |S134| = |S13| = |S23| = |S34| = 1, then the complement of the contraction
of Γ2(L) is contained in S5.5, one of the listed graphs in [5].

(ix) If |S34| = 1 and |S14| = 2, then Γ2(L) contains a subgraph isomorphic to G3,
one of the listed graphs in [11].

(x) If |S34| = 1 and |S12| = 2, then Γ2(L) contains a subgraph isomorphic to G3,
one of the listed graphs in [11].

(xi) If |S24| = 1 and |S14| = 2, then Γ2(L) contains a subgraph isomorphic to G3,
one of the listed graphs in [11].

(xii) If |S24| = |S34| = 1, then the complement of Γ2(L) is contained in S5.5, one
of the listed graphs in [5].

(xiii) If |S23| = |S24| = 1, then the complement of Γ2(L) is contained in W ∗7.5, one
of the listed graphs in [5], and so it is not toroidal (see Figure 31). Since in
Figure 31, we have the vertices a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4,
s23 ∈ S23 and s24 ∈ S24.

s23s24

b2d

a1 a2

b1 c

a3

Figure 31

(xiv) If |S13| = |S24| = 1, then the complement of Γ2(L) is contained in S5.5, one
of the listed graphs in [5].

(xv) If |S12| = |S13| = |S34| = 1, then Γ2(L) contains a subgraph isomorphic to
G3, one of the listed graphs in [11].

(xvi) If |S12| = |S34| = |S134| = 1, then Γ2(L) is contained in S5.6, one of the listed
graphs in [5] (see Figure 32). In Figure 32, we have the vertices a1, a2, a3 ∈ S1,
b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s12 ∈ S12 and s34 ∈ S34. 2
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s12
b2b1

dc

s34

a1 a2
a3

Figure 32

Moreover, we assume that S34 and S13 are singleton sets and S12 = S23 = S24 =
S234 = ∅. Then the complement of Γ2(L) contains C420, one of the listed graphs
in [5] (see Figure 33). In Figure 33, a1, a2, a3 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4,
s13 ∈ S13 and s34 ∈ S34. So it is toroidal.

a1

a2

a3

d

b1

b2

c

s13

s34

Figure 33

Also, if S12 and S34 are singleton sets and S13 = S14 = S23 = S24 = S134 =
S234 = ∅, then the complement of Γ2(L) contains C402, one of the listed graphs
in [5]. So it is toroidal. Now, consider S13 and S14 have exactly one element and
S23 = S24 = S34 = S234 = ∅. Then the complement of Γ2(L) contains C517, one
of the listed graphs in [5] (see Figure 34). In Figure 34, we have a1, a2, a3 ∈ S1,
b1, b2 ∈ S2, c ∈ S3, d ∈ S4, s13 ∈ S13 and s14 ∈ S14. So it is toroidal.

In the case that S14 and S24 have exactly one element and S13 = S23 = S34 =
S234 = ∅, the complement of Γ2(L) contains C403, one of the listed graphs in [5]
(see Figure 35). In Figure 35, we have the vertices a1, a2, a3 ∈ S1, b1, b2 ∈ S2,
c ∈ S3, d ∈ S4, s14 ∈ S14 and s24 ∈ S24. Therefore it is toroidal.

Now, if S234 and S14 have exactly one element and S13 = S23 = S24 = S34 = ∅,
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s14s13

a3a2

b1 b2a1c d

Figure 34

a1

a3

a2

b1 b2

c

d

s14

s24

Figure 35

then the complement of Γ2(L) contains C402, one of the listed graphs in [5]. So it
is toroidal.

Finally, if S14 has two elements and S13 = S23 = S24 = S34 = S234 = ∅, then
the complement of Γ2(L) contains C603, one of the listed graphs in [5]. So it is
toroidal.

Remark 2.12. Note that if the size of the set
⋃4

t=1 St is seven, |S1| = 3, |S2| = 2
and one of the following cases holds, then it is a question that whether Γ2(L) is
toroidal or not.

Case 1. |S13| = |S14| = |S234| = 1.
Case 2. |S13| = 1 and |S14| = 2.
Case 3. |S13| = |S14| = |S34| = 1

Now, the next theorem follows immediately from Lemma 2.11 and Remark 2.12.

Theorem 2.13. Suppose that |
⋃4

t=1 St| = 7, |S1| = 3, |S2| = 2, and also the cases
which are mentioned in Remark 2.12. do not hold. Then the graph Γ2(L) is toroidal
if and only if one of the following conditions holds:

(i) |Si1i2 | = |S1i1 | = 1 and S2i1i2 = S12 = S1i2 = S2i1 = S2i2 = ∅, for some
unique i1, i2 ∈ {3, 4},

(ii) |Si1i2 | = |S12| = 1 and S1i1i2 = S2i1i2 = S1i1 = S1i2 = S2i1 = S2i2 = ∅, for
i1, i2 6∈ {1, 2},
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(iii) |S1i1 | = |S1i2 | = 1 and S2i1i2 = S2i1 = S2i2 = Si1i2 = ∅, for i1, i2 6∈ {1, 2},

(iv) |S1i1 | = |S2i1 | = 1 and S2i1i2 = S1i2 = S2i2 = Si1i2 = ∅, for some unique
i1, i2 ∈ {3, 4},

(v) |S2i1i2 | = |S1i1 | = 1 and S1i2 = S2i1 = S2i2 = Si1i2 = ∅, for some unique
i1, i2 ∈ {3, 4},

(vi) |S1i1 | = 2 and S2i1i2 = S1i2 = S2i1 = S2i2 = Si1i2 = ∅, for some unique
i1, i2 ∈ {3, 4}.

Lemma 2.14. Suppose that |
⋃4

t=1 St| = 7 and |S1| = 1. If one of the following
conditions holds, then the graph Γ2(L) is not toroidal.

(1) |Si1i2 | = 3, for some unique i1, i2 ∈ {2, 3, 4}.

(2) |S1i1 | = 2, for some unique i1 ∈ {2, 3, 4}.

(3) |S1i1 | = |Si2i3 | = 1, for some unique i1, i2, i3 ∈ {2, 3, 4}.

(4) |S1i1 | = 1 and |Si1i2 | = 2, for some unique i1, i2 ∈ {2, 3, 4}.

(5) |Si1i2 | = 2 and |Si1i3 | = 1, for i1, i2, i3 6∈ {1}.

(6) |Si1i2 | = 2 and |S1i1i3 | = 1, for i1, i2, i3 6∈ {1}.

(7) |Si1i2 | = 2 and |S1i2i3 | = 1, for i1, i2, i3 6∈ {1}.

(8) |S1i1 | = |S1i2 | = |Si1i2 | = 1, for some unique i1, i2 ∈ {2, 3, 4}.

(9) |S1i1 | = 1, for all i1 6∈ {1} and |S1i1i2 | = 1, for some unique i1, i2 ∈ {2, 3, 4}.

(10) |S1i1 | = |Si1i2 | = |Si1i3 | = |S1i2i3 | = 1, for some unique i2, i3 ∈ {2, 3, 4}.

Proof. In (1) and (2), the contraction of Γ2(L) contains a subgraph isomorphic to
K3,7 and K4,5, respectively. In (3), the complement of Γ2(L) is contained in S5.5.
In (4) and (5), we can find a copy of G3 in the structure of Γ2(L). In (6) and
(7), the complement of Γ2(L) is contained in U6.6b. In (8), the complement of the
contraction of Γ2(L) is contained in Z∗8.3, one of the listed graphs in [5] (see Figure
36). In Figure 36, we have a ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3, d1, d2 ∈ S4, s13 ∈ S13,
s14 ∈ S14 and s34 ∈ S34.

In (9), the complement of the contraction of Γ2(L) is contained in Z∗8.3, one
of the listed graphs in [5]. In (10), the complement of the contraction of Γ2(L) is
contained in W6.6a, one of the listed graphs in [5]. In the all of the above cases,
Γ2(L) is not toroidal. 2

In the sequel, we assume that S12, S13 and S14 are singelton sets and S23 =
S24 = S34 = S123 = S124 = S134 = ∅. Then the graph Γ2(L) is toroidal, which is
pictured in Figure 37. In Figure 37, a ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3, d1, d2 ∈ S4,
s12 ∈ S12, s13 ∈ S13 and s14 ∈ S14.
Also, consider S14, S24 and S34 are singleton sets and S12 = S13 = S23 = S123 = ∅.
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s34

s14s13 − b1

d1

d2

ac1

c2

b2

Figure 36
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c2 c2

d1

d2
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Figure 37
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b1

b2

b2

s34
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d1

d2
a a

Figure 38
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Then Γ2(L) is toroidal (see Figure 38). In Figure 38, we have the vertices a ∈ S1,
b1, b2 ∈ S2, c1, c2 ∈ S3, d1, d2 ∈ S4, s14 ∈ S14, s24 ∈ S24 and s34 ∈ S34. We observe
that if S23 has two elements and S12 = S13 = S14 = S24 = S34 = S124 = S134 = ∅,
then the complement of Γ2(L) contains C603, one of the listed graphs in [5]. So it
is a toroidal graph. Finally, if S23, S24 and S34 are singleton sets and S12 = S13 =
S14 = ∅, then the graph Γ2(L) is pictured in Figure 39, which is toroidal. In Figure
39, we have the vertices a ∈ S1, b1, b2 ∈ S2, c1, c2 ∈ S3, d1, d2 ∈ S4, s23 ∈ S23,
s24 ∈ S24 and s34 ∈ S34. 2

b1

b1

b2

b2

s34

s23
s24

c1 c1

c2 c2

d1

d2

a

Figure 39

Theorem 2.15. Suppose that |
⋃4

t=1 St| = 7 and |S1| = 1. Then Γ2(L) is toroidal
if and only if one of the following conditions holds:

(i) If |S1i1 | = 1, for all i1 6∈ {1}, then Si1i2 = S1i1i2 = ∅, for all i1, i2 6∈ {1},

(ii) If |S1i1 | = |Si1i2 | = |Si1i3 | = 1, for some unique i1, i2, i3 ∈ {2, 3, 4}, then
S1i2 = S1i3 = S1i2i3 = ∅,

(iii) If |Si1i2 | = 2, for some unique i1, i2 ∈ {2, 3, 4}, then Si1i3 = Si2i3 = S1i1i3 =
S1i2i3 = ∅, for i3 6∈ {1, i1, i2} and S1i1 = ∅, for all i1 6∈ {1},

(iv) If |Si1i2 | = 1, for all i1, i2 6∈ {1}, then S1i1 = ∅, for all i1 6∈ {1}.

Theorem 2.16. Suppose that |
⋃4

t=1 St| = 8. Then the graph Γ2(L) is toroidal if
and only if one of the following conditions holds:

(i) There is Si with |Si| = 5, for 1 ≤ i ≤ 4 and Si1i2i3 = Si1i2 = ∅, for all
i1, i2, i3 6∈ {i},

(ii) There are unique Si, Sj with |Si| = 4 and |Sj | = 2, for 1 ≤ i, j ≤ 4 and
Si1i2i3 = Si1i2 = ∅, for all i1, i2, i3 6∈ {i}, Sii1 = ∅, for i1 6∈ {i, j},
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(iii) There are unique Si and Sj with |Si| = |Sj | = 3, for 1 ≤ i, j ≤ 4 and
S1i1i2 = Sji1i2 = Sii1 = Sji1 = Si1i2 = ∅, for all i1, i2 6∈ {i, j},

(iv) There are unique Si and Sj with |Si| = 3 and |Sj | = 1, for 1 ≤ i, j ≤ 4 and
|Sii1 | = 1, for some unique i1 ∈ {1, 2, 3, 4} \ {i, j}. Also, Sij = Sii2 = Si3i4 =
Sii2j = Si1i2j = ∅, for i2 6∈ {i, j, i1} and for all i3, i4 6∈ {i},

(v) For all 1 ≤ i ≤ 4, |Si| = 2 and Si1i2i3 = Si1i2 = ∅, for 1 ≤ i1, i2, i3 ≤ 4.

Proof. If one of the above conditions holds, then one can easily check that Γ2(L) is
toroidal.

Conversely, let Γ2(L) be a toroidal graph. Then we can consider the following
cases:

(i) Assume that there is a unique Si, say S1, such that |S1| = 5. If S234 has at
least one element, then we can find a copy of K4,5 in the contraction of Γ2(L),
which is impossible. Also, if S23, S24 or S34 has at least one element, then
the complement of Γ2(L) is contained in S5.5, one of the listed graphs in [5].
Thus it is not toroidal, which is again impossible. Hence for toroidality of
Γ2(L), we assume that S234 = S23 = S24 = S34 = ∅. In this situation, Γ2(L)
is contained in K8 \ (K3 ∪K2) (cf. [5, p.55]).

(ii) Assume that there are unique Si and Sj , say S1 and S2, such that |S1| = 4
and |S2| = 2. If S234, S23 or S24 has at least one element, then we can find
a copy of K4,5 in the contraction of Γ2(L). So it is not toroidal, which is
impossible. Also, if S13 or S14 has at least one element, then the complement
of Γ2(L) is contained in S5.5, one of the listed graphs in [5]. Thus it is not
toroidal, which is impossible. In addition, if S34 has at least one element, then
the complement of Γ2(L) is contained in W7.7d, one of the listed graphs in [5]
(see Figure 40). In Figure 40, a1, a2, a3, a4 ∈ S1, b1, b2 ∈ S2, c ∈ S3, d ∈ S4,
s34 ∈ S34. Thus it is not toroidal, which is impossible.

c

a1 a2

a3a4

s34

b1 b2

d

Figure 40

Therefore we assume that all of the above sets are empty. In this situation,
Γ2(L) is contained in K8 \ (K3 ∪K2), which is toroidal (cf. [5, p.55]).

(iii) Assume that there are unique Si and Sj , say S1 and S2, such that |S1| =
|S2| = 3. If S134 or S234 has at least one element, then the complement of
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Γ2(L) is contained in S5.5, one of the listed graphs in [5]. Thus it is not
toroidal, which is impossible. Moreover if S13, S14, S23 or S24 has at least
one element, then the contraction of Γ2(L) contains a subgraph isomorphic to
K4,5. It means that Γ2(L) is not toroidal, a contradiction. Also, if S34 has at
least one element, then the complement of Γ2(L) is contained in S5.5, one of
the listed graphs in [5]. Thus it is not toroidal, a contradiction. Therefore, for
toroidality of Γ2(L), we assume that all of the above sets are empty. In this
situation, Γ2(L) is contained in K8 \ (K3 ∪K2) (cf. [5, p.55]).

(iv) Assume that there are unique Si and Sj , say S1 and S2, such that |S1| = 3
and |S2| = 1. If S13 or S14 has at least two elements, then we can find a
copy of K3,7 in the contraction of Γ2(L), which is impossible. Also, if S12,
S23, S24 or S34 has at least one element, then we can find a copy of K4,5 in
the contraction of Γ2(L), a contradiction. In addition, if S234 has at least
one element, then the complement of Γ2(L) is contained in S5.5, one of the
listed graphs in [5]. Thus it is not toroidal, a contradiction. In the case that
|S13| = |S14| = 1, the graph Γ2(L) contains G3, one of the listed graphs in [11].
Hence it is not toroidal, which is contradiction. Finally, if |S13| = |S124| = 1
or |S14| = |S123| = 1, then the complement of Γ2(L) is contained in S5.6, one
of the listed graphs in [5]. Thus it is not toroidal, a contradiction. So, for the
toroidality of Γ2(L), we assume that either S13 has at most one element by
condition S12 = S14 = S23 = S24 = S34 = S124 = S234 = ∅, or S14 has at most
one element by considering S12 = S13 = S23 = S24 = S34 = S123 = S234 = ∅.
In these cases, the complement of Γ2(L) contains a subgraph isomorphic to
C415, one of the listed graphs in [5], which is toroidal.

(v) Assume that S1, S2, S3 and S4 have two elements. As S123, S124, S134 or
S234 has at least one element, then Γ2(L) contains K8 \ (K12 ∪ 2K2). So it
is not toroidal (see [4]). Also, if S12, S13, S14, S23, S24 or S34 has at least
one element, then the contraction of Γ2(L) contains a copy of K4,5. The
contradiction is clear. Hence we assume that all of the above sets are empty.
In this situation, Γ2(L) is isomorphic to a complete 4-partite graph with all
parts of size two, which is toroidal. 2

We end this paper with the following theorem.

Theorem 2.17. Suppose that |
⋃4

t=1 St| = 9 . Then the graph Γ2(L) is toroidal if
and only if there exists Si with |Si| = 6, for 1 ≤ i ≤ 4 and Si1i2i3 = Si1i2 = ∅, for
all i1, i2, i3 6∈ {i}.
Proof. Let Γ2(L) be a toroidal graph and for all 1 ≤ i ≤ 4, |Si| 6= 6. Then the
contraction of Γ2(L) contains a copy of K4,5. Hence it is not toroidal, which is
impossible. Therefore we assume that there exists a unique Si with |Si| = 6, for
1 ≤ i ≤ 4. Now, if |S234| ≥ 1, then we can see a subgraph isomorphic to K4,6 in the
contraction of Γ2(L), which is not toroidal. When S23, S24 or S34 has at least one
element, the contraction of Γ2(L) contains a copy of K3,7. It means that Γ2(L) is
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not toroidal, which is impossible. Now, assume that all of the sets S23, S24, S34 and
S234 are empty. Then the complement of Γ2(L) contains C603, one of the listed
graphs in [5], which is toroidal.

The converse statement is clear. 2

Acknowledgments. The authors are deeply grateful to the referee for careful
reading of the manuscript and helpful suggestions.
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