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Abstract. In this paper, we study the cellular structure of the G-edge colored

partition algebras, when G is a finite group. Further, we classified all the irre-

ducible representations of these algebras using their cellular structure whenever G is

a finite cyclic group. Also we prove that the Z/rZ-Edge colored partition algebras are

quasi-hereditary over a field of characteristic zero which contains a primitive rth root of

unity.

1. Introduction

Cellular structure of algebras has been studied in the last few years, and a
variety of algebras have been proved as cellular, which are like Ariki-Koike Hecke
algebra, Brauer algebra, Partition algebra, etc. Cellular algebras, which were intro-
duced by Graham and Lehrer in [5], were defined by the existence of a basis with
some multiplicative properties. Later, König and Xi in [10], have given equivalent
definition for cellular algebra in terms of cell ideals, but not in terms of basis. One
of the main problem in the representation theory is to parameterize all irreducible
modules for an algebra. But in cellular algebras, the structure provides a complete
list of irreducible modules for the algebra over any field in a systematic way.

The partition algebras have been studied independently by Martin in [11] and
Jones as generalizations of the Temperley-Lieb algebras and the Potts model in sta-
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tistical mechanics. In 1993, Jones considered the algebra as the centralizer algebra
of the symmetric group Sn on V ⊗k (see [7]). In [14], Xi gave a sufficient condition
for a given algebra to be cellular and proved that the partition algebras are cellular
by using this condition.

In [2], Matthew Bloss introduced a G-edge colored partition algebra (or G-
colored partition algebra) as the centralizer algebra of the wreath product G o Sn,
where G is any finite group. This algebra has an important subalgebra called
Ramified partition algebra (or Class partition algebra) which has been introduced
by P.P Martin and A. Elgamal in [12] and by A.J Kennedy in [9] in connection with
some physical problem in Statistical Mechanics and as the centralizer of S|G| o Sn
respectively. Further, the G-edge colored partition algebra has been identified as
subalgebra of the G-vertex colored partition algebra which was introduced and
realized as the centralizer algebra of the subgroup G× Sn of G o Sn in [13].

We are interested in studying the cellular structure and the representations of
this algebras. In this paper, we decompose G-edge colored partition algebra as a
direct sum of vector spaces

⊕k
l=0 Vl ⊗F Vl ⊗F F [G o Sl]. If G is a finite group and

F [G o Sl] are cellular for 0 ≤ l ≤ k, we prove that the G-edge colored partition
algebras are cellular by using cellular structure of F [G o Sl].

The Ariki-Koike Hecke algrbras Hζ,F were introduced by Ariki and Koike in
[1], as deformation of Z/rZ o Sn. This algebras have been proved to have a cellular
basis by Graham and Lehrer in [5] also by Dipper, James and Mathas in [4].

Let F be a field with a primitive rth root of unity. If ζ = 1, then the algebra
Hζ,F is isomorphic to F [(Z/rZ) oSn]. By using a cellular structure of F [(Z/rZ) oSn],
we have parameterized the index set of all irreducible representations of Z/rZ-
edge colored partition algebra. Also we prove that the Z/rZ-edge colored partition
algebras are quasi-hereditary if the characteristic of F is zero.

2. Cellular Algebra

The original definition of cellular algebra was introduced by Graham and Lehrer
in [5]. Here, we restrict ourself to an arbitrary field instead of commutative ring in
the following definition.

Definition 2.1([5]). An associative F -algebra A is called a cellular algebra with
cell datum (I,M,C, i) if the following condition are satisfied.

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a
finite set M(λ). The algebra A has an F -basis CλS,T where (S, T ) runs through
all element of M(λ)×M(λ) for all λ ∈ I.

(C2) The map i is an F -linear anti-automorphism of A with i2 = id which sends
CλS,T to CλS,T .

(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A the product aCλS,T can

be written as
∑
U∈M(λ) ra(U, S)CλU,T + r′ where r′ is a linear combination
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of basis elements with upper index µ strictly smaller than λ, and where the
coefficient ra(U, S) ∈ F do not depend on T.

For each λ ∈ I, there is a cell module W (λ) with F - basis {CS |S ∈ M(λ)},
the action is given by aCS =

∑
T∈M(λ) ra(T, S)CT , where ra(T, S) is in F as in the

above definition(C3).
For a cell module W (λ), we can associate a bilinear form Φλ : W (λ)×W (λ)→ F

by CλS,SC
λ
T,T ≡ Φ(CS , CT )CλS,T modulo the ideal generated by all basis elements

CµU,V with upper index µ < λ. And the isomorphism class of simple modules is
parameterized by the set {λ ∈ I|Φλ 6= o}. Next we recall the equivalent definition
of cellular algebra in terms of cell ideals which was introduced in [10] by Koing and
Xi.

Definition 2.2([14]). Let A be an F -algebra. Assume that there is an involution
i on A. A two sided ideal J in A is called a cell ideal if and only if i(J) = J and
there exists a left ideal ∆ ⊂ J such that ∆ is finitely generated and free over F and
there is an isomorphism of A-module α : J ' ∆ ⊗F i(∆) (where i(∆) ⊂ J is the
i-image of ∆) making the following diagram commutative:

J
α−−−−→ ∆⊗F i(∆)

i

y yx⊗y 7→i(y)⊗i(x)
J

α−−−−→ ∆⊗F i(∆)

The algebra A (with the involution i) is called cellular if and only if there is an
F -module decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i(J ′j) = J ′j for

each j and such that setting Jj = ⊕ji=1J
′
j gives a chain of two sided ideals of A :

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A (each of them fixed by i) and for each j (j = 1, 2, · · ·n)
the quotient J ′j = Jj/Jj−1 is a cell ideal (with respect to the involution induced by
i on the quotient) of A/Jj−1.

Note that, the modules ∆(j) for 1 ≤ j ≤ n, are called the standard modules
of the cellular algebra. These modules are called the cell modules in the sense of
Graham and Lehrer in [5]. And the above chain of ideals in A is called cell chain
of A.

Lemma 2.3([14]). Let A be an F -algebra with an involution i. Suppose there is a
decomposition

(2.1) A =

m⊕
j=1

Vj ⊗F Vj ⊗F Bj as direct sum of vector spaces

where Vj is a vector space and Bj is a cellular algebra with respect to an involution σj

and a cell chain J
(j)
1 ⊂ · · · ⊂ J (j)

sj = Bj for each j. Define Jt =
⊕t

j=1 Vj⊗F Vj⊗FBj .
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Assume that the restriction of i on Vj ⊗F Vj ⊗F Bj is given by w ⊗ v ⊗ b 7→
v ⊗ w ⊗ σj(b). If for each j there is a bilinear form φj : Vj ⊗F Vj → Bj such that
σj(φj(w, v)) = φj(v, w) for all w, v ∈ Vj and that the multiplication of two elements
in Vj⊗Vj⊗Bj is governed φj modulo Jj−1, that is, for x, y, u, v ∈ Vj and b, c ∈ Bj ,
we have (x ⊗ y ⊗ b)(u ⊗ v ⊗ c) = x ⊗ v ⊗ bφj(y, u)c modulo the ideal Jj−1, and if

Vj ⊗ Vj ⊗ J (j)
l + Jj−1 is an ideal in A for all l and j, then A is a cellular algebra.

In [14], Xi have given this Lemma 2.3 as a sufficient condition, especially for
diagram algebras to be cellular. We are going to use this lemma to prove G-edge
colored partition algebras are cellular.

3. Edge Colored Partition Algebra

Let N be a finite set. A partition x on N is a collection {A1, A2, · · · , An} of pair-
wise disjoint non-empty subsets of N whose union is N. The sets A1, A2, · · · , An are
called blocks of that partition. We say that a partition x is finer than a partition y
if every block of x is contained in some block of y. In this case we write x ≤ y.

Let k be a positive integer and denote k = {1, 2, · · · , k} with usual order. Let
x be a partition on k. Then the partition x can be represented as diagram on k as
follows, arrange vertices 1, 2, · · · , k in a row, and then two vertices are connected
by a path if and only if they are in a same block of x. For if x = {{1, 3}, {2}, {4, 5}}
is a partition of {1, 2, 3, 4, 5} then

1 2 3 4 5
x =

Let us denote Pk be the set of all such partition diagram on k. Suppose x, y are two
partitions on k, we define x · y is the smallest partition z on k such that x, y ≤ z.
As diagrammatically,

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

x =

y =

x · y =

Let k′ = {1′, 2′, · · · , k′}. Suppose d is a partition on k∪k′, then d can be represented
as diagram on k ∪ k′ as follows, arrange vertices 1, 2, · · · , k in a row and vertices
1′, 2′, · · · , k′ in parallel row directly below. Then two vertices are connected by a
path if and only if they are in a same block in d. Such a partition diagram is called
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k-partition diagram on k ∪ k′. Two partition diagrams are equivalent if and only
if they determine the same partition on k ∪ k′.

A standard k-partition diagram is a k-partition diagram whose blocks partition
k into top blocks and partition k′ into bottom blocks by restriction on k and k′

respectively and if a top block connects to a bottom block (such blocks are called
through block) then it connects with a single edge joining the leftmost vertex in
each block. Such edges are called propagating edges and the number of propagating
edges is called the propagating number of the diagram and its denoted by pn(d).

The set of all k-partition diagram under this relation on k ∪ k′ is denoted by
Pk∪k′ .

Definition 3.1([11, 8]). Let F be any field and q ∈ F. The partition algebra
Pk∪k′(q) is F -algebra with basis Pk∪k′ with the following multiplication on dia-
grams. Let d1 and d2 be diagram. To obtain the product d1d2

• Place d1 above d2 so that the bottom row of d1 coincide with the top row of
d2. We now have a diagram with a top, middle and bottom row.

• Count the number of connected components that lie entirely in the middle
row. Let this number be n.

• Make a new k-partition diagram d3 by eliminating that middle row of vertices,
by keeping the top and bottom rows and maintaining the connection between
them.

• We define d1d2 = qnd3.
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3′
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4′
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5′

6

6′

d1 =

1

1′
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d1d2 = q2
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Let G be any group. We denote Pk(G) as the set of all elements of Pk whose
edges are labeled by the elements of G, with orientation from left to right. For
example, let g1, g2 ∈ G. Then the following diagram is an element of P6(G).

1 2 3 4 5 6
x′ =

g1
g2

Let x′, y′ ∈ Pk(G) with underlying partition diagrams x, y ∈ Pk respectively, we
define x′ · y′ ∈ Pk(G) as follows,

• x′ · y′ = 0 if and only if there exist an edge from some vertex i to j in x′ and
in y′ with different colour.

• otherwise, x′·y′ is the diagram whose underlying partition diagram is x·y ∈ Pk
and with same labels.

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

x′ =
g1 g2 g3

y′ =
h1 h2

x′ · y′ = δg1h1

h1 g2 g3 h2

where δg1h1
is a kroneker delta.

A (G, k)-partition diagram is a k-partition diagram with oriented edges, where
each edge is colored(or labeled) by an element of the group G. When k is understood,
we will call such diagrams as G diagrams. Two G-diagrams are equivalent if the
underlying partitions are equivalent and the G-diagrams are equivalent up to vector
addition, that is the following holds.

g g−1

g 2

g1

g 2

g1

g1
g2

is equivalent to

is equivalent to
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Thus when we speak of a G-diagram, we are really speaking of its equivalence class.
The set of all such G-partition diagrams is denoted by Pk∪k′(G). If G is finite, then

|Pk∪k′(G)| =
∑2k
l=1 |G|2k−lS(2k, l), where S(2k, l) is the Stirling number.

Definition 3.2([2]). The edge colored partition algebra Pk∪k′(q,G) is the F -
algebra F [Pk∪k′(G)] with basis consisting of G-diagrams and the multiplication
on G-diagrams is defined as follows:
Let d1, d2 be two G-diagrams

• Multiply the underlying partition diagram of d1 and d2. This will give the
underlying partition diagram of the G-diagram d1d2.

• In carrying out the previous step, d1 is placed above d2. If during the con-
catenation, a bottom edge of d1 coincide with a top edge of d2 with the same
orientation but with different label, then d1d2 = 0.

• Perform vector addition of the labels along imposed connection between d1
and d2. Start in d1 and follow a path into d2, performing vector addition
as you go. When doing this, the labels on the edges in the diagram d2 are
multiplied on the right of the d1 edge labels.

• For each connected components of edges entirely in the middle row, a factor
of q appears in the product.
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4

4′

5

5′

6

6′
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h
2

h2h3

g3

g4

g 5
h
−
1

6

g6

h4

d̄1d̄2 = δ
(h1,h5)

(g1g
−1
2 ,g7)

q2

where

δ
(h1,h5)

(g1g
−1
2 ,g7)

=

{
1 if h1 = g1g

−1
2 and h5 = g7

0 Otherwise



676 A. Joseph Kennedy and G. Muniasamy

Standard form of a G-diagram

• The underlying partition diagram is in standard form

• The orientation of edges are either from left to right or from top to bottom.

For each equivalence class we can choose a standard G-diagram as representative,
so hereafter a G-diagram means that it is a standard G-diagram.

Let d ∈ Pk∪k′(G), define flip(d) ∈ Pk∪k′(G) as follows: Rotate the diagram
from top to bottom and change the orientation and colour of the propagating edges
by their inverse. Clearly, flip(flip(d)) = d for all d ∈ Pk∪k′(G).

Let η : Pk∪k′(q,G) → Pk∪k′(q,G) be the linear extension of the map flip on
Pk∪k′(G).

Lemma 3.3. The map η is an anti-automorphism of Pk∪k′(q,G) with η2 = id.

Proof. Clearly, η is a linear. Since flip(flip(d)) = d, η2(d) = d for all d ∈
Pk∪k′(G). From the definition of the multiplication on G-diagrams, flip(d1d2) =
flip(d2)flip(d1) for every d1, d2 ∈ Pk∪k′(G). Therefore, η(d1d2) = η(d2)η(d2) for
all d1, d2 ∈ Pk∪k′(G). 2

4. Cellular Structure of Pk∪k′(q,G)

Let us recall that Pk(G) be the set all partition diagrams on k with G-labeled
edges. For l ∈ {0, 1, · · · , k}, we define a vector space Vl, which has as a basis set

sl = {(x, S) | x ∈ Pk(G), |x| ≥ l and S is a collection of any l-blocks of x}

Note that, the dimension of Vl is

k∑
i=l

|G|k−lS(k, l)

(
i

l

)
. Let (x, S) ∈ Vl. We denote

[i] for the block of x with the left most vertex i.
We define an order on the blocks of x that [i] < [j] if i < j, this gives an order

on S. We denote j[i] for the jth element of S with the left most vertex i. So, we can
always write S as {1[i1], 2[i2], · · · , l[il]}. Let us denote dk is the partition on k which
is obtained from d ∈ Pk∪k′(G) by deleting all elements in k′ of d (i.e., by restricting
on k).

Definition 4.1. The wreath product of a group G with the symmetric group Sn is
a group

G o Sn = {(g1, g2, · · · , gn;π) | gi ∈ G and π ∈ Sn}

under the multiplication

(g1, g2, · · · , gn;π1)(h1, h2, · · · , hn;π2) = (g1hπ1(1), g2hπ1(2), · · · , gnhπ1(n);π1π2).
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Lemma 4.2. There is a bijection from Pk∪k′(G) to qkl=0sl × sl ×G o Sl
Proof. Let d ∈ Pk∪k′(G). Define x := dk ∈ Pk(G) and y := dk′ ∈ Pk(G) (by
identifying k′ with k by sending j′ to j). Let Sd be the set of all through blocks of d,
then |Sd| = pn(d) = l (say). Now consider Sd = {C1, C2, · · · , Cl}. Let us define S =
{C1

k, C
2
k, · · · , Clk} and T = {C1

k′ , C
2
k′ , · · · , Clk′}, where Cik (resp Cik′) are the blocks

of x (resp y) which are obtained from Ci ∈ Sd by deleting the numbers contained in
k′ (resp k). Then we can rewrite S = {1[i1], 2[i2] · · · l[il]} and T = {1[j′1], 2[j′2] · · · l[j′l ]}.
Hence, (x, S), (y, T ) ∈ sl. Define (g1, g2 · · · , gl;π) ∈ GoSl corresponds to d by π(t) =
s if t[i] is connected to s[j′] by an edge with colour gt in d. Since the G-diagram d is
in the standard form, x, y and (g1, g2 · · · , gl;π) are unique. Thus, every G-diagram
d can be uniquely represented as (x, S)×(y, T )×(g1, g2 · · · , gl;π) in sl×sl×(G oSl).
Conversely, for every element (x, S)× (y, T )× (g1, g2 · · · , gl;π) ∈ sl × sl × (G o Sl)
we can associate unique partition G-diagram d ∈ Pk∪k′(G). 2

For every l ∈ {0, 1, · · · , k}, Vl and F [G o Sl] are vector space with basis set sl
and G o Sl respectively. So,

⊕k
l=0 Vl ⊗F Vl ⊗F F [G o Sl] is a vector space with basis

set qkl=0sl × sl ×G o Sl.

Remark 4.3. As vector space, Pk∪k′(q,G) is isomorphic to
⊕k

l=0 Vl⊗F Vl⊗F F [G o
Sl] (by above Lemma 4.2).

For l ∈ {0, 1, · · · , k}, define φl : Vl ⊗k Vl → K[G o Sl] as follows: Let (x, S) and
(y, T ) be two elements in sl. Define

φl((x, S), (y, T )) =


q|H|(e;π) if there exist a π ∈ Sl such that the block of

x · y (if 6= 0 and) containing the ith block of S

contains the unique π(i)th block of T, (i = 1, 2, · · · , l)
0 otherwise

where H be the set of all blocks on k \S ∪ T which are obtained from the blocks of
x · y by deleting the elements of S ∪T . By Lemma 4.3 in [14], φl is a bilinear map.

Lemma 4.4. Let d, d′ be two G-diagrams. If d = (u,R)⊗ (x, S)⊗ (g1;π1),
d′ = (y, T )⊗(v,Q)⊗(g2;π2) ∈ Vl⊗F Vl⊗F F [GoSl], where gi = (gi1, g

i
2, · · · , gil), (i =

1, 2) then dd′ = (u,R) ⊗ (v,Q) ⊗ (g1;π1)φl((x, S), (y, T ))(g2;π2) modulo Jl−1 =⊕l−1
j=0 Vj ⊗F Vj ⊗F F [G o Sj ].

Proof. Let dd′ = δqrd′′.We claim that (u,R)⊗(v,Q)⊗(g1;π1)φl((x, S), (y, T ))(g2;π2)
is exactly equal to δqrd′′, in Pk∪k′(q,G) modulo Jl−1.
Case(1): Suppose φl((x, S), (y, T )) = 0. Then by definition of φl, x · y is zero or
any one of the following is true:

1. there exits a block of x · y which contains either more than one element of
S(or T ),

2. there exits a block of x · y which contains a single element of S (res. T ) but
no element of T (res. S),
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which implies that dd′ = 0 or pn(dd′) < l. Therefore, dd′ ∈ Jl−1.
Case(2): Suppose φ((x, S)(y, T )) = q|H|(e;π) where π is defined as in the definition
of φl. Since dk′ = x and d′k = y, we have |H| is equal to the number of middle
components. So, it is sufficient to prove that (u,R)⊗(v,Q)⊗(g1;π1)(e;π)(g2;π2) =
d
′′
. That is,

(u,R)⊗ (v,Q)⊗ (g11g
2
(π1π)(1)

, · · · , g1l g2(π1π)(l)
;π1ππ2) = d

′′
.

Clearly, d
′′

k = u, d
′′

k′ = v. By the definition of φl, there are exactly l blocks
C1, C2, · · · , Cl of x · y in which each block contains exactly one block in S and
one block in T. Now consider a block Ci in x · y, then there is a block i[s] ∈ S
and π(i)[t] ∈ T which is contained in Ci. Moreover, the block i[s] is connected to

π(i)[t] by an edge which is colored by e. Then, there is a block in d which contains

π−11 (i)[r] ∈ R and i[s] ∈ S and that edge is colored by g1j = g1
π−1
1 (i)

and there is

a block in d′ which contains π(i)[t] ∈ T and π2(π(i))[p] ∈ Q and that edge is col-

ored by g2π(i)). Hence, there is a block in d′′ which contains both π−11 (i)[r] ∈ R and

π2(π(i))[p] ∈ Q and the edge is colored by g1
π−1
1 (i)

g2π(i). That is, there is a block in

d′′ which contains both j[r] ∈ R and π2(π(π1(j)))[p] ∈ Q and the edge is colored by

g1j g
2
π(π1(j))

. Therefore, (u,R)⊗ (v,Q)⊗ (g11g
2
(π1π)(1)

, · · · , g1l g2(π1π)(l)
;π1ππ2) = d′′. 2

Lemma 4.5. Let l and m be two non-negative integers such that l < m. Suppose d =
(u,R)⊗(x, S)⊗(g1;π1) ∈ Vm⊗F Vm⊗F F [GoSm], and d′ = (y, T )⊗(v,Q)⊗(g2;π2) ∈
Vl⊗F Vl⊗F F [G oSl]. Then dd′ = q|H|(w,E)⊗ (z,G)⊗ (g; τ) in Vl⊗F Vl⊗F F [G oSl]
modulo Jl−1, where (g; τ) = (g3;π′1)(g2;π2) for some (g3;π′1) ∈ G o Sl.
Proof. By lemma 4.2, if we consider d and d′ as a diagrams, then pn(dd′) ≤ l.
Suppose pn(dd′) = l that is, |E| = l. Then |G| = l. Since |Q| = l and G is
obtained from Q, which implies that (z,G) = (v,Q). Hence, by Lemma 4.2 and
Lemma 4.4 we have (g; τ) = (g3;π′1)(g2;π2) for some (g3;π′1) ∈ G o Sl. Therefore,
dd′ ∈ Vl ⊗F Vl ⊗F F [G o Sl] Suppose pn(dd′) < l that is, |E| < l, then obviously
dd′ ∈ Jl−1. 2

Lemma 4.6. If d = (x, S)⊗ (y, T )⊗ (g1, g2 · · · gl;π) ∈ Vl ⊗F Vl ⊗F F [G o Sl], then
η(d) = (y, T )⊗ (x, S)⊗ ((g−1π−1(1), · · · , g

−1
π−1(l));π

−1).

Proof. For every i ∈ {1, 2, · · · , l}, there is a block i[s] ∈ S which is connected
to π(i)[t] = j[t] ∈ T by an edge colored by gi in d. Which imply that the block

j[t] ∈ T which is connected to π−1(j)[s] ∈ S by an edge colored by g−1π−1(j) in η(d)

(since the orientation of edge is changed). Therefore, by definition of η, η(d) =
(y, T )⊗ (x, S)⊗ ((g−1π−1(1), · · · , g

−1
π−1(l));π

−1). 2

Lemma 4.7. Let ∗ : F [G oSl]→ F [G oSl] be the involution on F [G oSl] which is de-
fined by (g1, g2, · · · , gl;π) 7→ ((g−1π−1(1), · · · , g

−1
π−1(l));π

−1). for all (g1, g2, · · · , gl;π) ∈
G o Sl. Then (φl(v1, v2))

∗
= φl(v2, v1) for all v1, v2 ∈ Vl.

Proof. Let v1 = (x, S) and v2 = (y, T ). Suppose φl(v1, v2) = 0. Since x · y = y · x,
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then by definition of φl, φl(v2, v1) = 0. If φl(v1, v2) 6= 0, then φl(v1, v2) = q|H|(e;π).
So, there is a block Ci of x · y which contains both i[s] ∈ S and π(i)[t] ∈ T with
edge colored by e. Since Ci is block of y ·x, then Ci contains both π−1(i)[s] ∈ S and

i[t] ∈ T with edge labeled by e. Therefore, φl(v2, v1) = q|H|(e;π−1). By definition
of involution ∗, the result follows. 2

Theorem 4.8. The G-Edge Colored Partition algebras Pk∪k′(q,G)) are cellular
with involution η if F [G o Sl] is cellular with involution ∗ for all l ∈ {0, 1, · · · , k}.
Proof. Put j−1 = 0 and G o S0 = {1}. By Remark 4.3, the edge colored partition
algebra Pk∪k′(q,G) has decomposition as direct sum of vector space

Pk∪k′(q,G) =

k⊕
l=0

Vl ⊗F Vl ⊗F F [G o Sl].

Since F [GoSl] is cellular with involution (g1, g2, · · · , gl;π) 7→ ((g−1π−1(1), · · · , g
−1
π−1(l));π

−1),

there is a cell chain J
(l)
1 ⊂ · · · ⊂ J

(l)
sl = F [G oSl] for all l. By Lemma 4.2, Lemma 4.4

and Lemma 4.5, Vl⊗Vl⊗J lj +Jl−1 is an ideal of Pk∪k′(q,G), for every l. Moreover,

V1 ⊗ V1 ⊗ J (1)
1 ⊂ · · · ⊂ V1 ⊗ V1 ⊗ J (1)

s1 ⊂ V1 ⊗ V1 ⊗ F [G o S1]⊕ V2 ⊗ V2 ⊗ J (2)
1

⊂ · · · ⊂ V1 ⊗ V1 ⊗ F [G o S1]⊕ V2 ⊗ V2 ⊗ F [G o S2]

⊂ · · · ⊂
k−1⊕
l=1

Vl ⊗F Vl ⊗F F [G o Sl]⊕ Vk ⊗ Vk ⊗ JkSk
= Pk∪k′(q,G).

By Lemma 4.6 and Lemma 4.7, it satisfied all the condition of Lemma 2.3. Hence
Pk∪k′(q,G) is cellular. 2

Cellular algebras are cyclic cellular if all the cell modules are cyclic. In [6],
T.Geetha and F. M. Goodman have proved that if A is cyclic cellular then A o Sn
is cyclic cellular.

Corrollary 4.9([6]). If F [G] is cyclic cellular then G-Edge colored partition alge-
bras are cellular.

Corrollary 4.10. The partition algebra is cellular.

Proof. Take G is trivial group. 2

In general, F [G o Sn] is not cellular for any arbitrary group G. And even the
group algebra F [G] is not a cellular, since cellular algebra is always split but general
field are not splitting field for arbitrary group. Moreover F [G oSn] = (F [G]) oSn and
if F [G] is quasi hereditary then F [G o Sn] is also quasi hereditary whenever n! ∈ F.
Since cellular algebras are more close to quasi-hereditary, so in a similar way we can
ask that if F [G] is cellular, whether F [G o Sn] is cellular ?. Suppose if G is cyclic
group of order r and F is a field which contains primitive rth roots of unity, then
by Theorem 4.15, F [(Z/rZ) o Sn] have a cellular structure.
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Cellular basis for F [(Z/rZ) o Sn]

The Ariki-Koike Hecke algrbras H were introduced by Ariki and Koike in [1], as
deformation of Z/rZ o Sn. Moreover, these algebras are a generalization of Iwahori-
Hecke algebras of type A and B. For Hecke algebra of Symmetric group H(Sn)
(deformation of Sn), the Kazhdan-Lusztig basis became a cellular basis. Graham
and Lehrer in [5] constructed a cellular basis for H through the Kazhdan-Lusztig
basis of H(Sn). Dipper, James and Mathas in [4], have described a different cellular
basis for the Ariki-Koike Hecke algrbras H. We prefer this basis because it has
many combinatorial and representation theoretic properties and it is more natural
generalization from the cellular basis of group algebra of symmetric group. Let ζ
be an invertible element of the field F, and Q1, Q2, · · · , Qr arbitrary elements of F.

Definition 4.11([1]). The Ariki-Koike algebra H = Hζ,F is the unital associa-
tive F -algebra with generator T0, T1, · · · , Tn−1 and relations

(T0 −Q1) · · · (T0 −Qr) = 0

(Ti − ζ)(Ti + 1) = 0 for 1 ≤ i < n,

T0T1T0T1 = T1T0T1T0,

TiTj = TjTi for 0 ≤ i < j − 1 < n− 1,

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i < n− 1.

Remark 4.12([1]). Suppose a field F contains a primitive rth root of unity ω and
if ζ = 1, Qs = ωs for 1 ≤ s ≤ r, then H ∼= F [(Z/rZ) o Sn]

Definition 4.13.

(i) A partition of n is a sequence λ = (λ1, λ2, · · · ) of non-negative integers such
that λ1 ≥ λ2 ≥ · · · and |λ| =

∑
i≤1 λi = n.

(ii) A multi-partition of n is an ordered r-tuple of partitions λ = (λ(1), λ(2), · · · , λ(r))
with |λ(1)| + · · · + |λ(r)| = n. We denote λ ` n if λ is a multi-partition of n.
Denote I(n) be the set of all multi-partitions of n. and M(λ) be the set of all
standard tableau of shape λ.

Define e be the smallest positive integer such that 1 + ζ + ζ2 + · · ·+ ζ(e−1) = 0
if no such positive integer exists we set e = 0.

Definition 4.14. A partition λ = (λ1, λ2, · · · ) is e-restricted if λi − λ(i+1) < e for
i ≥ 1, unless e = 0 in which case we stipulate that all partition are 0-restricted.
A multipartiton λ = (λ(1), λ(2), · · · , λ(r)) ` n is e-restricted if each partition λ(s) is
e-restricted for 1 ≤ s ≤ r.

Note that, if ζ = 1, then emust be characteristic of underlying field F.Otherwise
q is a primitive eth root of unity.
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Theorem 4.15([4]). Let F is a any field which contains rth root of unity ω
and ∗ be the involution on F [(Z/rZ) o Sn] which is defined by (g1, g2, · · · , gl;π) 7→
((g−1π−1(1), · · · , g

−1
π−1(l));π

−1). for all (g1, g2, · · · , gl;π) ∈ G oSl. If ζ = 1 and Qk = ωk

for k = 1, 2, · · · , r. Then

i) {Cλs,t|s, t ∈M(λ), λ ∈ I(n)} is a cellular basis for F [(Z/rZ) o Sn].

ii) Suppose for each λ ` n, ∆(λ) is the cell module of F [(Z/rZ) o Sn], then
{∆(λ)|λ ∈ I(n) and λ is e-restricted } is a complete set of pairwise non-
isomorphic irreducible F [(Z/rZ) o Sn]-modules.

Next we are going to classify the representation of Pk∪k′(q, (Z/rZ)) by using
cellularity of F [(Z/rZ) o Sn].

Theorem 4.16. Let F be field of characteristic p (or 0) which contains a primitive
rth roots of unity. Then the standard modules of Pk∪k′(q, (Z/rZ)) are W (l, λ) =
Vl ⊗ vl ⊗ ∆(λ) where l ∈ k ∪ {0}, λ ∈ I(l), vl is fixed non zero vector of Vl and
∆(λ) is standard modules of F [(Z/rZ) o Sl].
Theorem 4.17. Let F be field of characteristic p (or 0) which contains a primitive
rth roots of unity. If q 6= 0, then the non isomorphic simple Pk∪k′(q, (Z/rZ))-
modules are parameterized by {(m,λ) | 0 ≤ m ≤ k, λ ∈ I(m) and λ is p-restricted
}.
Proof. From the above corollary and general theory of cellularity, the irreducible
Pk∪k′(q, (Z/rZ))-module are parameterized by {(l, λ)|Φ(l,λ) 6= 0}, where Φ(l,λ)is a
bilinear form on W (l, λ)×W (l, λ) to F [Z/rZ oSl]. Suppose l 6= 0. Then the bilinear
form Φ(l,λ) 6= 0 if and only if the corresponding linear form Φλ for the cellular
algebra F [(Z/rZ) o Sn] is not zero. By the corollary, Φλ 6= 0 if and only if λ is p-
restricted. If l = 0, then Φ(l,λ) 6= 0 if and only if q 6= 0. Hence proved the corollary.
2

The quasi-hereditary algebras are typically cellular algebras. This algebra were
introduced by Cline, Parshall and Scott in [3] to study the highest-weight categories
in the representation theory of Lie algebra.

Definition 4.18. Let A be an F -algebra. An ideal J in A is called a hereditary
ideal if J is idempotents, J(rad(A))J = 0 and J is a projective left(or right) A-
module. The algebra A is called quasi-hereditary provided there is a finite chain
0 = J0 ⊂ · · · ⊂ Jt ⊂ · · · ⊂ Jm = A of ideal in A such that Ji/Jj−1 is a hereditary
ideal in A/Jj−1 for all j.

Theorem 4.19. Suppose F is field of characteristic zero which contains primitive
rth roots of unity. If q 6= 0, then Pk∪k′(q, (Z/rZ)) is quasi-hereditary.

Proof. Since F is field of characteristic zero which contains primitive rth roots of
unity. And by Theorem 4.17, for 0 ≤ m ≤ k, λ ∈ I(m) if and only if Φ(m,λ) 6= 0.
The result follows from the Remark 3.10 of [5]. 2
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