DOI QR코드

DOI QR Code

데이터추론 및 클라우드 호스팅 기법을 활용한 최적 에너지 관리시스템 구현 및 성능분석

Implementation and Performance Analysis of An Optimal Energy Management System Using Data Inference and Cloud Hosting Scheme

  • 투고 : 2016.07.30
  • 심사 : 2016.09.24
  • 발행 : 2016.10.25

초록

본 논문에서는 에너지관리의 효율성 향상을 위하여 데이터 추론기법과 클라우드 호스팅 기법을 활용한 최적의 에너지 관리시스템을 제안하였다. 에너지 절약 및 효율적인 관리 기법이 에너지 생산 및 공급을 줄이기 위해서 매우 유용하다는 점에 대한 관심이 부각되고 있다. 에너지 관리시스템은 컴퓨터를 사용하여 합리적인 에너지 이용과 함께 쾌적하고 기능적인 업무 환경을 효율적으로 유지 보전하기 위한 제어 관리시스템을 의미한다. 제안 시스템은 에너지관리를 위해 다양한 설비를 제어하고, 에너지 소비 환경의 변화로부터 추론을 위한 데이터를 획득하며, 에너지를 사용하는 환경의 변화에 최적으로 적응함으로써 효율적인 에너지 관리가 가능하도록 구현되었다. 구현된 시스템의 성능을 평가하기 위해서 대상 설비에 대한 추론엔진이 작동하는 서버에서 월간 전력사용량을 고려한 실험을 실시하였고, 그 결과 우수한 성능을 보임을 확인하였다.

In this paper, we propose an optimal energy management system using the data inference scheme and the cloud hosting technique in order to improve the efficiency of the energy management. We have been interested in the issue that the energy-saving and efficient management techniques are very useful for reducing the production and supply of energy. The energy management system refers to the control and management system in order to enable the efficient use of energy and also to maintain a comfortable and functional working environment effectively with the help of a computer. The proposed system controls a variety of equipment for energy management, and also gets the data for the inference from the changes in energy consumption environment, which is implemented to enable efficient energy management by adapting and controlling the changes optimally in the working environment. In order to evaluate the performance of the implemented system, some experiments have been performed under consideration of the monthly electric power consumption on the server that the inference engine is operating for the target facilities. Finally, the results show that the proposed system has a good performance.

키워드

참고문헌

  1. M. Wetter, "Building control virtual test bed user manual version 1.1.0", Lawrence Berkeley National Laboratory, 2012.
  2. Ye Yao, Zhiwei Lian, Zhijian Hou, X. Zhou, "Optimal operation of a large cooling system based on an empirical model", Applied Thermal Engineering 24, pp. 2303-2321, 2004. https://doi.org/10.1016/j.applthermaleng.2004.03.006
  3. K. S. Kim et al, "Implementation of Location Tracking Sensor Network Using M2M Technology & Cloud Services", Journal of IEIE, pp. 93-102, Sep. 2014.
  4. Rafael Alcala, Jorge Casillas, Oscar Cordon, Antonio Gonzalez, Francisco Herrera, "A genetic rule weighting and selection process for fuzzy control of heating, ventilating and air conditioning system", Engineering Appllicaion Artificial Intelligence 18, pp. 279-296, 2005. https://doi.org/10.1016/j.engappai.2004.09.007
  5. W. K. Park, Y. K. Jeong, I. W. Lee, "Management Technology for High Energy-Efficient Building", ETRI Electronics and Telecomm. Trend 26(6), 2011.
  6. K. S. Kim, M.S. Kang, "A Study on An Efficient Electricity Saving Scheme for Mobile Cloud Computing", Proceedings of ICGHIT 2016 (IEIE CS & IEEE Seoul Sec.), Feb. 2016.
  7. Anton Beloglazov, "Energy-Efficient Management of Virtual Machines in Data Centers for Cloud Computing", PhD thesis of The Univ. of MELBOURNE, Feb. 2013.
  8. K. S. Kim et al,, "Design of Smart Management System Based on Energy Saving & Big Data Analysis", Proceedings of 2015 Fall Conference of IEIE, pp. 712-714, Nov. 2015.
  9. Yusuf Ozturk, "An Intelligent Home Energy Management System to Improve Demand Response", IEEE Transactions on Smart Grid, Vol. 4, pp. 694-701. June 2013. https://doi.org/10.1109/TSG.2012.2235088