DOI QR코드

DOI QR Code

A Low-Voltage Low-Power Analog Front-End IC for Neural Recording Implant Devices

체내 이식 신경 신호 기록 장치를 위한 저전압 저전력 아날로그 Front-End 집적회로

  • Cha, Hyouk-Kyu (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • 차혁규 (서울과학기술대학교 전기정보공학과)
  • Received : 2016.08.11
  • Accepted : 2016.09.22
  • Published : 2016.10.25

Abstract

A low-voltage, low-power analog front-end IC for neural recording implant devices is presented. The proposed IC consists of a low-noise neural amplifier and a programmable active bandpass filter to process neural signals residing in the band of 1 Hz to 5 kHz. The neural amplifier is based on a source-degenerated folded-cascode operational transconductance amplifier (OTA) for good noise performance while the following bandpass filter utilizes a low-power current-mirror based OTA with programmable high-pass cutoff frequencies from 1 Hz to 300 Hz and low-pass cutoff frequencies from 300 Hz to 8 kHz. The total recording analog front-end provides 53.1 dB of voltage gain, $4.68{\mu}Vrms$ of integrated input referred noise within 1 Hz to 10 kHz, and noise efficiency factor of 3.67. The IC is designed using $18-{\mu}m$ CMOS process and consumes a total of $3.2{\mu}W$ at 1-V supply voltage. The layout area of the IC is $0.19 mm^2$.

본 논문에서는 체내 이식용 신경 신호 기록 장치를 위한 저전압 저전력 아날로그 front-end 집적회로를 설계하였다. 제안된 집적 회로는 1 Hz에서 5 kHz 주파수 대역에 존재하는 신경 신호를 처리하기 위해 저잡음 neural 증폭기와 대역폭 조절이 가능한 능동 bandpass 필터로 구성되어 있다. Neural 증폭기는 우수한 잡음 특성을 위해 source-degenerated folded-cascode 연산증폭기를 기반으로 하여 설계하였고, 능동 필터의 경우 저전력의 current-mirror 연산증폭기를 이용하여 설계하였다. 능동 필터의 high-pass cutoff 주파수는 1 Hz에서 300 Hz까지 제어가 가능하며, low-pass cutoff 주파수는 300 Hz에서 8 kHz까지 제어가 가능하다. 전체 아날로그 front-end 회로는 53.1 dB의 전압 이득 성능과 1 Hz에서 10 kHz 대역에 대해서 $4.68{\mu}Vrms$의 입력 잡음 성능과 3.67의 noise efficiency factor 성능을 보인다. $18-{\mu}m$ CMOS 공정을 이용하여 설계를 하였고 1-V 전원에서 $3.2{\mu}W$의 전력 소모 성능을 갖는다. 칩 레이아웃 면적은 $0.19 mm^2$ 이다.

Keywords

References

  1. X. Zou, L. Liu, J. H. Cheong, L. Yao, P. Li, M.-Y. Cheng, W. L. Goh, R. Rajkumar, G. S. Dawe, K.-W. Cheng, and M. Je, "A 100-channel 1-mW implantable neural recording IC," IEEE Trans. Circuits and Systems I., vol. 60, no. 10, pp. 2584-2596, Oct. 2013. https://doi.org/10.1109/TCSI.2013.2249175
  2. S.-I. Na, S. H. Lee, H. Lee, J.-K. Woo, S. K. Kim, and S. Kim, ‟A low noise amplifier for neural recording system", in IEIE Fall Conference Proceedings, pp. 644-647, Jun. 2010.
  3. P. Kmon and P.Grybos, "Energy efficient lownoise multichannel neural amplifier in submicron CMOS process," IEEE Trans. Circuits and Systems I, vol. 60, no. 7, pp. 1764-1775, Jul. 2013. https://doi.org/10.1109/TCSI.2012.2230504
  4. S. Brenna, F. Padovan, A. Neviani, A. Bevilacqua, A. Bonfani, and A. L. Lacaita, "A 64-channel $965-{\mu}W$ neural recording SoC with UWB wireless transmission in 130-nm CMOS", IEEE Trans. Circuits and Systems II, vol. 63, no. 6, pp. 528-532, Jun. 2016. https://doi.org/10.1109/TCSII.2016.2530882
  5. W. Wattanapanitch, M. Fee, and R. Sarpeshkar, "An energy-efficient micropower neural recording amplifier," IEEE Trans. Biomed. Circuits and Systems, vol. 1, no. 2, pp. 136-147, Jun. 2007. https://doi.org/10.1109/TBCAS.2007.907868
  6. C. Qian, J. Parramon, and E. Sanchez-Sinenchio, "A micropower low-noise neural recording front-end circuit for epileptic seizure detection," IEEE J. of Solid-State Circuits, vol. 46, no. 6, pp. 1392-1405, Jun. 2011. https://doi.org/10.1109/JSSC.2011.2126370
  7. V. Majidzadeh, A. Schmid, and Y. Leblebici, "Energy efficient low noise neural recording amplifier with enhanced noise efficiency factor," IEEE Trans. Biomed. Circuits and Systems, vol. 5, no. 3, pp. 262-271, Jun. 2011. https://doi.org/10.1109/TBCAS.2010.2078815