DOI QR코드

DOI QR Code

Experimental investigation of long-term characteristics of greenschist

  • Zhang, Qing-Zhao (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Shen, Ming-Rong (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Ding, Wen-Qi (Department of Geotechnical Engineering, College of Civil Engineering, Tongji University) ;
  • Jang, Hyun-Sic (Department of Geophysics, Kangwon National University) ;
  • Jang, Bo-An (Department of Geophysics, Kangwon National University)
  • 투고 : 2015.09.14
  • 심사 : 2016.06.03
  • 발행 : 2016.10.25

초록

The greenschist in the Jinping II Hydropower Station in southwest China exhibits continuous creep behaviour because of the geological conditions in the region. This phenomenon illustrates the time-dependent deformation and progressive damage that occurs after excavation. In this study, the responses of greenschist to stress over time were determined in a series of laboratory tests on samples collected from the access tunnel walls at the construction site. The results showed that the greenschist presented time-dependent behaviour under long-term loading. The samples generally experienced two stages: transient creep and steady creep, but no accelerating creep. The periods of transient creep and steady creep increased with increasing stress levels. The long-term strength of the greenschist was identified based on the variation of creep strain and creep rate. The ratio of long-term strength to conventional strength was around 80% and did not vary much with confining pressures. A quantitative method for predicting the failure period of greenschist, based on analysis of the stress-strain curve, is presented and implemented. At a confining pressure of 40 MPa, greenschist was predicted to fail in 5000 days under a stress of 290 MPa and to fail in 85 days under the stress of 320 MPa, indicating that the long-term strength identified by the creep rate and creep strain is a reliable estimate.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

참고문헌

  1. ASTM D7070-08 (2008), Standard Test Method for Creep of Rock Core Under Constant Stress and Temperature; ASTM, USA.
  2. Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock: Part II - Exprimental studies", Int. J. Rock Mech. Min. Sci., 4(4), 407-423. https://doi.org/10.1016/0148-9062(67)90031-9
  3. Boukharov, G.N., Chanda, M.W. and Boukharov, N.G. (1995), "The three processes of brittle crystalline rock creep", Int. J. Rock Mech. Min. Sci., 32(4), 325-335.
  4. Chen, B.R., Zhao, X.J., Feng, X.T., Zhao, H.B. and Wang, S.Y. (2014), "Time-dependent damage constitutive model for the marble in the Jinping II hydropower station in China", Bull. Eng. Geol. Environ., 73(2), 499-515. https://doi.org/10.1007/s10064-013-0542-z
  5. Costin, L.S. (1985), "Time-dependent damage and creep of brittle rock", (In: Damage Mechanics and Continuum Modeling), Proceedings of 2 Sessions Sponsored by the Engineering Mechanics Division of the American Society of Civil Engineering in Conjunction with the ASCE Convention, Detroit, MI, USA, October.
  6. Cruden, D.M. (1971), "The form of the creep law for rock under uniaxial compression", Int. J. Rock Mech. Min. Sci., 8(2), 105-126. https://doi.org/10.1016/0148-9062(71)90003-9
  7. Cruden, D.M. (1974), "The static fatigue of brittle rock under uniaxial compression", Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 11(2), 67-73. https://doi.org/10.1016/0148-9062(74)92650-3
  8. Cui, X.H. and Fu, Z.L. (2006), "Test study on rock creep properties and its long-term strength", Chinese J. Rock Mech. Eng., 25(5), 1021-1024.
  9. Donath, F.A. (1964), "Strength variation and deformational behavior in anisotropic rocks", State of Stress in the Earth's Crust, New York, NY, USA, pp. 281-300.
  10. Dusseault, M.B. and Fordham, C.J. (1993), "Time-dependent behavior of rocks", In: Comprehensive Rock Engineering, Oxford, Pergamon.
  11. Fabre, G. and Pellet, F. (2006), "Creep and time-dependent damage in argillaceous rocks", Int. J. Rock Mech. Min. Sci., 43(6), 950-960. https://doi.org/10.1016/j.ijrmms.2006.02.004
  12. Fujii, Y., Kiyama, T., Ishijima, Y. and Kodama, J. (1999), "Circumferential strain behavior during creep tests of brittle rocks", Int. J. Rock Mech. Min. Sci., 36(3), 323-327. https://doi.org/10.1016/S0148-9062(99)00024-8
  13. He, M.C. and Xie, H.P. (2005), "Study on rock mechanics in deep mining engineering", Chinese J. Rock Mech. Eng., 24(16), 2803-2813.
  14. John, A.F. and Maurice, B.D. (1989), Rock Engineering, McGraw-Hill, New York, NY, USA.
  15. Hudson, J.A. (1971), "Effect of time on the mechanical behaviour of failed rock", Nature, 232, 185-186. https://doi.org/10.1038/232185a0
  16. ISRM (1981), Rock characterization, testing and monitoring- ISRM Suggested method; Pergamon, Oxford, UK.
  17. Jin, J. and Cristescu, N.D. (1998), "An elastic-viscoplastic model for transient creep of rock salt", Int. J. Plasticity, 14(1-3), 85-107. https://doi.org/10.1016/S0749-6419(97)00042-9
  18. Korzeniowski, W. (1991), "Rheological model of hard rock pillar", Rock Mech. Rock Eng., 24(3), 155-166. https://doi.org/10.1007/BF01042859
  19. Lajtai, E.Z. (1981), "Creep and crack growth in Lac du Bonnet granite due to compressive stress", Proceedings of the 5th Canadian Fracture Conference on Fracture Problems and Solutions for the Energy Industry, Winnipeg, MB, Canada, September, pp. 229-238.
  20. Lajtai, E.Z. (1991), "Time-dependent behaviour of the rock mass", Geotech. Geolo. Eng., 9(2), 109-124. https://doi.org/10.1007/BF00881253
  21. Li, D.Y., Wong, L.N.Y., Liu, G. and Zhang, X.P. (2012), "Influence of water content and anisotropy on the strength and deformability of low porosity meta-sedimentary rocks under triaxial compression", Eng. Geol., 126, 46-66. https://doi.org/10.1016/j.enggeo.2011.12.009
  22. Liu, M.Y. and Xu, C.Y. (2000), "Rheological properties of anhydrite and determination of its long time strength", Chinese Min. Mag., 9(2), 53-55.
  23. Liu, J., Yang, C.H., Wu, W. and Gao, X.P. (2006), "Study on creep characteristics and constitutive relation of rock salt", Chinese Rock Soil Mech., 27(8), 1267-1271.
  24. Luo, R.L. (2008), "Study on non-stationary creep model of deep lying rock and its application", Ph.D. Thesis; HoHai University, Nanjing, China.
  25. Ma, L. (2004), "Experimental investigation of time dependent behavior of welded Topopah Spring tuff", Dissertation; University of Nevada, Reno, NV, USA.
  26. Ma, L. and Daemen, J.J.K. (2006), "An experimental study on creep of welded tuff", Int. J. Rock Mech. Min. Sci., 43(2), 282-291. https://doi.org/10.1016/j.ijrmms.2005.07.002
  27. Malan, D.F. (1999), "Time-dependent behaviour of deep level tabular excavations", Rock Mech. Rock Eng., 32(2), 123-155. https://doi.org/10.1007/s006030050028
  28. Malan, D.F. (2002), "Simulating the time-dependent behaviour of excavations in hard rock", Rock Mech. Rock Eng., 35(4), 225-254. https://doi.org/10.1007/s00603-002-0026-0
  29. Martin, C.D. and Chandler, N.A. (1994), "The progressive fracture of Lac du Bonnet granite", Int. J. Rock Mech. Min. Sci., 31(6), 643-659. https://doi.org/10.1016/0148-9062(94)90005-1
  30. Miura, K., Okui, Y. and Horii, H. (2003), "Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system", Mech. Mater., 35(3-6), 587-601. https://doi.org/10.1016/S0167-6636(02)00286-7
  31. Munday, J.G.L., Mohamed, A.E. and Dhir, R.K. (1977), "A criterion for predicting the long-term strength of rock", Proceedings of the Conference 'Rock Engineering' University of Newcastle-upon-Tyne, Newcastle, England, April, pp. 127-135.
  32. Peng, S. (1973), "Time-dependent aspects of rock behavior as measured by a servo-controlled hydraulic testing machine", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 10(3), 235-246. https://doi.org/10.1016/0148-9062(73)90033-8
  33. Pushkarev, V.I. and Afanasev, B.G. (1973), "A rapid method of determining the long-term strengths of weak rocks", J. Min. Sci., 9(5), 558-560. https://doi.org/10.1007/BF02501389
  34. Sangha, C.M. and Dhir, R.K. (1972), "Strength and complete stress-strain relationships for concrete tested in uniaxial compression under different test conditions", Mate. Stru., 5(6), 361-370.
  35. Shao, J.F., Zhu, Q.Z. and Su, K. (2003), "Modeling of creep in rock materials in terms of material degradation", Comput. Geotech., 30(7), 549-555. https://doi.org/10.1016/S0266-352X(03)00063-6
  36. Shin, K., Okubo, S., Fukui, K. and Hashiba, K. (2005), "Variation in strength and creep life of six Japanese rocks", Int. J. Rock Mech. Min. Sci., 42(2), 251-260. https://doi.org/10.1016/j.ijrmms.2004.08.009
  37. Sterpi, D. and Gioda, G. (2009), "Visco-plastic behaviour around advancing tunnels in squeezing rock", Rock Mech. Rock Eng., 42(2), 319-339. https://doi.org/10.1007/s00603-007-0137-8
  38. Timoshenko, S.P. (1953), History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structure, McGraw-Hill, New York, NY, USA.
  39. Wang, G.J. (2004), "A new constitutive creep-damage model for salt rock and its characteristics", Int. J. Rock Mech. Min. Sci., 41(Supp. 1), 61-73. https://doi.org/10.1016/j.ijrmms.2004.03.020
  40. Wang, M.Y., Zhou, Z.P. and Qian, Q.H. (2006), "Tectonic, deformation and failure problems of deep rock mass", Chinese J. Rock Mech. Eng., 25(3), 448-455.
  41. Wang, J.B., Liu, X.R., Liu, X.J. and Huang, M. (2014), "Creep properties and damage model for salt rock under low-frequency cyclic loading", Geomech. Eng., Int. J., 7(5), 569-587. https://doi.org/10.12989/gae.2014.7.5.569
  42. Wang, J.B., Liu, X.R., Song, Z.P. and Shao, Z.S. (2015), "An improved Maxwell creep model for salt rock". Geomech. Eng., Int. J., 9(4), 499-511. https://doi.org/10.12989/gae.2015.9.4.499
  43. Wawersik, W.R. and Brace, W.F. (1971), "Post-failure behavior of a granite and diabase", Rock Mech., 3(2), 61-85. https://doi.org/10.1007/BF01239627
  44. Xu, W.Y., Yang, S.Q. and Chu, W.J. (2006), "Nonlinear viscoelasto-plastic rheological model of rock and its engineering application", Chinese J. Rock Mech. Eng., 25(3), 433-447.
  45. Yang, S.Q. and Jiang, Y.Z. (2009), "Triaxial mechanical creep behavior of sandstone", Min. Sci. Tech., 20(3), 339-349. https://doi.org/10.1016/S1674-5264(09)60206-4
  46. Yang, C.H., Daemen, J.J.K. and Yin, J.H. (1999), "Experimental investigation of creep behavior of salt rock", Int. J. Rock Mech. Min. Sci., 36(2), 233-242. https://doi.org/10.1016/S0148-9062(98)00187-9
  47. Yang, W.D., Zhang, Q.Y., Li, S.C. and Wang, S.G. (2014), "Time-dependent behavior of diabase and a nonlinear creep model", Rock Mech. Rock Eng., 47(4), 1211-1224. https://doi.org/10.1007/s00603-013-0478-4
  48. Zhang, Q.Z., Shen, M.R. and Wen, Z. (2011), "Investigation on mechanical behavior of a rock plane using rheological tests", J. Mater. Civ. Eng., 23(8), 1220-1226. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000269
  49. Zhang, Q.Z., Shen, M.R., Ding, W.Q. and Carl, C. (2012), "Shearing creep properties of cements with different irregularities on two surfaces", J. Geophy. Eng., 9(2), 210-217. https://doi.org/10.1088/1742-2132/9/2/210
  50. Zhang, Y., Xu, W.Y., Gu, J.J. and Wang, W. (2013), "Triaxial creep tests of weak sandstone from fracture zone of high dam foundation", J. Cent. South Univ., 20(9), 2528-2536. https://doi.org/10.1007/s11771-013-1765-7
  51. Zhang, Y., Xu, W.Y., Shao, J.F., Zhao, H.B. and Wang, W. (2015), "Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project", Water Sci. Eng., 8(1), 55-62. https://doi.org/10.1016/j.wse.2015.01.005
  52. Zhou, H. (2011), "A creep constitutive model for salt rock based on fractional derivatives", Int. J. Rock Mech. Min. Sci., 48(1), 116-121. https://doi.org/10.1016/j.ijrmms.2010.11.004
  53. Zhu, W., Li, Y., Li, S., Wang, S. and Zhang, Q. (2011), "Quasi-three-dimensional physical model tests on a cavern complex under high in-situ stresses", Int. J. Rock Mech. Min. Sci., 48(2), 199-209. https://doi.org/10.1016/j.ijrmms.2010.11.008

피인용 문헌

  1. Experimental investigation of influence of alternating cyclic loadings on creep behaviors of sandstone vol.25, pp.1, 2016, https://doi.org/10.1007/s11043-019-09432-1