DOI QR코드

DOI QR Code

Diffusion-Weighted MRI of Malignant versus Benign Portal Vein Thrombosis

  • Ahn, Jhii-Hyun (Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Yu, Jeong-Sik (Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Cho, Eun-Suk (Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Chung, Jae-Joon (Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Kim, Joo Hee (Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital) ;
  • Kim, Ki Whang (Department of Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital)
  • 투고 : 2015.09.22
  • 심사 : 2016.04.19
  • 발행 : 2016.07.01

초록

Objective: To validate the diffusion-weighted MRI (DWI) for differentiation of benign from malignant portal vein thrombosis. Materials and Methods: The Institutional Review Board approved this retrospective study and waived informed consent. A total of 59 consecutive patients (52 men and 7 women, aged 40-85 years) with grossly defined portal vein thrombus (PVT) on hepatic MRI were retrospectively analyzed. Among them, liver cirrhosis was found in 45 patients, and hepatocellular carcinoma in 47 patients. DWI was performed using b values of 50 and $800sec/mm^2$ at 1.5-T unit. A thrombus was considered malignant if it enhanced on dynamic CT or MRI; otherwise, it was considered bland. There were 18 bland thrombi and 49 malignant thrombi in 59 patients, including 8 patients with simultaneous benign and malignant PVT. Mean apparent diffusion coefficients (ADCs) of benign and malignant PVTs were compared by using Mann-Whitney U test. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curve analysis. Results: The mean ADC ${\pm}$ standard deviation of bland and malignant PVT were $1.00{\pm}0.39{\times}10^{-3}mm^2/sec$ and $0.92{\pm}0.25{\times}10^{-3}mm^2/sec$, respectively; without significant difference (p = 0.799). The area under ROC curve for ADC was 0.520. An ADC value of $>1.35{\times}10^{-3}mm^2/sec$ predicted bland PVT with a specificity of 94.6% (95% confidence interval [CI]: 84.9-98.9%) and a sensitivity of 22.2% (95% CI: 6.4-47.6%), respectively. Conclusion: Due to the wide range and considerable overlap of the ADCs, DWI cannot differentiate the benign from malignant thrombi efficiently.

키워드

참고문헌

  1. Okuda K, Ohnishi K, Kimura K, Matsutani S, Sumida M, Goto N, et al. Incidence of portal vein thrombosis in liver cirrhosis. An angiographic study in 708 patients. Gastroenterology 1985;89:279-286 https://doi.org/10.1016/0016-5085(85)90327-0
  2. Ogren M, Bergqvist D, Bjorck M, Acosta S, Eriksson H, Sternby NH. Portal vein thrombosis: prevalence, patient characteristics and lifetime risk: a population study based on 23,796 consecutive autopsies. World J Gastroenterol 2006;12:2115-2119 https://doi.org/10.3748/wjg.v12.i13.2115
  3. Cohen J, Edelman RR, Chopra S. Portal vein thrombosis: a review. Am J Med 1992;92:173-182 https://doi.org/10.1016/0002-9343(92)90109-O
  4. Witte CL, Brewer ML, Witte MH, Pond GB. Protean manifestations of pylethrombosis. A review of thirty-four patients. Ann Surg 1985;202:191-202 https://doi.org/10.1097/00000658-198508000-00009
  5. Akin O, Dixit D, Schwartz L. Bland and tumor thrombi in abdominal malignancies: magnetic resonance imaging assessment in a large oncologic patient population. Abdom Imaging 2011;36:62-68 https://doi.org/10.1007/s00261-010-9608-6
  6. Sotiropoulos GC, Radtke A, Schmitz KJ, Molmenti EP, Schroeder T, Saner FH, et al. Liver transplantation in the setting of hepatocellular carcinoma and portal vein thrombosis: a challenging dilemma? Dig Dis Sci 2008;53:1994-1999 https://doi.org/10.1007/s10620-007-0099-4
  7. Takizawa D, Kakizaki S, Sohara N, Sato K, Takagi H, Arai H, et al. Hepatocellular carcinoma with portal vein tumor thrombosis: clinical characteristics, prognosis, and patient survival analysis. Dig Dis Sci 2007;52:3290-3295 https://doi.org/10.1007/s10620-007-9808-2
  8. Pirisi M, Avellini C, Fabris C, Scott C, Bardus P, Soardo G, et al. Portal vein thrombosis in hepatocellular carcinoma: age and sex distribution in an autopsy study. J Cancer Res Clin Oncol 1998;124:397-400 https://doi.org/10.1007/s004320050189
  9. Sakata J, Shirai Y, Wakai T, Kaneko K, Nagahashi M, Hatakeyama K. Preoperative predictors of vascular invasion in hepatocellular carcinoma. Eur J Surg Oncol 2008;34:900-905 https://doi.org/10.1016/j.ejso.2008.01.031
  10. Mathieu D, Grenier P, Larde D, Vasile N. Portal vein involvement in hepatocellular carcinoma: dynamic CT features. Radiology 1984;152:127-132 https://doi.org/10.1148/radiology.152.1.6328574
  11. Tublin ME, Dodd GD 3rd, Baron RL. Benign and malignant portal vein thrombosis: differentiation by CT characteristics. AJR Am J Roentgenol 1997;168:719-723 https://doi.org/10.2214/ajr.168.3.9057522
  12. Kaufman LB, Yeh BM, Breiman RS, Joe BN, Qayyum A, Coakley FV. Inferior vena cava filling defects on CT and MRI. AJR Am J Roentgenol 2005;185:717-726 https://doi.org/10.2214/ajr.185.3.01850717
  13. Aslam Sohaib SA, Teh J, Nargund VH, Lumley JS, Hendry WF, Reznek RH. Assessment of tumor invasion of the vena caval wall in renal cell carcinoma cases by magnetic resonance imaging. J Urol 2002;167:1271-1275 https://doi.org/10.1016/S0022-5347(05)65280-9
  14. Ergen FB, Hussain HK, Caoili EM, Korobkin M, Carlos RC, Weadock WJ, et al. MRI for preoperative staging of renal cell carcinoma using the 1997 TNM classification: comparison with surgical and pathologic staging. AJR Am J Roentgenol 2004;182:217-225 https://doi.org/10.2214/ajr.182.1.1820217
  15. Catalano OA, Choy G, Zhu A, Hahn PF, Sahani DV. Differentiation of malignant thrombus from bland thrombus of the portal vein in patients with hepatocellular carcinoma: application of diffusion-weighted MR imaging. Radiology 2010;254:154-162 https://doi.org/10.1148/radiol.09090304
  16. Battal B, Kocaoglu M, Akgun V, Karademir I, Deveci S, Guvenc I, et al. Diffusion-weighted imaging in the characterization of focal liver lesions: efficacy of visual assessment. J Comput Assist Tomogr 2011;35:326-331 https://doi.org/10.1097/RCT.0b013e318216efeb
  17. Xu PJ, Yan FH, Wang JH, Shan Y, Ji Y, Chen CZ. Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr 2010;34:506-512 https://doi.org/10.1097/RCT.0b013e3181da3671
  18. Miller FH, Hammond N, Siddiqi AJ, Shroff S, Khatri G, Wang Y, et al. Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging 2010;32:138-147 https://doi.org/10.1002/jmri.22235
  19. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology 2010;254:47-66 https://doi.org/10.1148/radiol.09090021
  20. Sandrasegaran K, Akisik FM, Lin C, Tahir B, Rajan J, Aisen AM. The value of diffusion-weighted imaging in characterizing focal liver masses. Acad Radiol 2009;16:1208-1214 https://doi.org/10.1016/j.acra.2009.05.013
  21. Parikh T, Drew SJ, Lee VS, Wong S, Hecht EM, Babb JS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 2008;246:812-822 https://doi.org/10.1148/radiol.2463070432
  22. Bruegel M, Holzapfel K, Gaa J, Woertler K, Waldt S, Kiefer B, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 2008;18:477-485 https://doi.org/10.1007/s00330-007-0785-9
  23. Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol 2001;35:421-430 https://doi.org/10.1016/S0168-8278(01)00130-1
  24. Sandrasegaran K, Tahir B, Nutakki K, Akisik FM, Bodanapally U, Tann M, et al. Usefulness of conventional MRI sequences and diffusion-weighted imaging in differentiating malignant from benign portal vein thrombus in cirrhotic patients. AJR Am J Roentgenol 2013;201:1211-1219 https://doi.org/10.2214/AJR.12.10171
  25. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC. Hepatic arterial-phase dynamic gadolinium-enhanced MR imaging: optimization with a test examination and a power injector. Radiology 1997;202:268-273 https://doi.org/10.1148/radiology.202.1.8988222
  26. Connolly GC, Chen R, Hyrien O, Mantry P, Bozorgzadeh A, Abt P, et al. Incidence, risk factors and consequences of portal vein and systemic thromboses in hepatocellular carcinoma. Thromb Res 2008;122:299-306 https://doi.org/10.1016/j.thromres.2007.10.009
  27. Jonas S, Bechstein WO, Steinmüller T, Herrmann M, Radke C, Berg T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology 2001;33:1080-1086 https://doi.org/10.1053/jhep.2001.23561
  28. Kim T, Murakami T, Takahashi S, Hori M, Tsuda K, Nakamura H. Diffusion-weighted single-shot echoplanar MR imaging for liver disease. AJR Am J Roentgenol 1999;173:393-398 https://doi.org/10.2214/ajr.173.2.10430143
  29. Gourtsoyianni S, Papanikolaou N, Yarmenitis S, Maris T, Karantanas A, Gourtsoyiannis N. Respiratory gated diffusion-weighted imaging of the liver: value of apparent diffusion coefficient measurements in the differentiation between most commonly encountered benign and malignant focal liver lesions. Eur Radiol 2008;18:486-492 https://doi.org/10.1007/s00330-007-0798-4
  30. Kang BK, Na DG, Ryoo JW, Byun HS, Roh HG, Pyeun YS. Diffusion-weighted MR imaging of intracerebral hemorrhage. Korean J Radiol 2001;2:183-191 https://doi.org/10.3348/kjr.2001.2.4.183
  31. Silvera S, Oppenheim C, Touze E, Ducreux D, Page P, Domigo V, et al. Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. AJNR Am J Neuroradiol 2005;26:236-241
  32. Kuwahara S, Miyake H, Fukuoka M, Koan Y, Ono Y, Moriki A, et al. Diffusion-weighted magnetic resonance imaging of organized subdural hematoma--case report. Neurol Med Chir (Tokyo) 2004;44:376-379 https://doi.org/10.2176/nmc.44.376
  33. Brooks RA, Di Chiro G, Patronas N. MR imaging of cerebral hematomas at different field strengths: theory and applications. J Comput Assist Tomogr 1989;13:194-206 https://doi.org/10.1097/00004728-198903000-00002
  34. Does MD, Zhong J, Gore JC. In vivo measurement of ADC change due to intravascular susceptibility variation. Magn Reson Med 1999;41:236-240 https://doi.org/10.1002/(SICI)1522-2594(199902)41:2<236::AID-MRM4>3.0.CO;2-3
  35. Schaefer PW, Grant PE, Gonzalez RG. Diffusion-weighted MR imaging of the brain. Radiology 2000;217:331-345 https://doi.org/10.1148/radiology.217.2.r00nv24331
  36. Bradley WG Jr. MR appearance of hemorrhage in the brain. Radiology 1993;189:15-26 https://doi.org/10.1148/radiology.189.1.8372185
  37. Yu JS, Chung JJ, Kim JH, Kim KW. Limited value of diffusion-weighted MR imaging for differentiating bland from malignant portal venous thrombi. Radiology 2010;256:673-674; author reply 674 https://doi.org/10.1148/radiol.100277

피인용 문헌

  1. Selection and Reporting of Statistical Methods to Assess Reliability of a Diagnostic Test: Conformity to Recommended Methods in a Peer-Reviewed Journal vol.18, pp.6, 2017, https://doi.org/10.3348/kjr.2017.18.6.888
  2. Reduced microperfusion due to portal vein thrombosis: Impact on the outcome of percutaneous thermal tumor ablation vol.67, pp.3, 2017, https://doi.org/10.3233/ch-179218
  3. Venous invasion by hepatic tumors: imaging appearance and implications for management vol.43, pp.8, 2016, https://doi.org/10.1007/s00261-017-1298-x
  4. LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound vol.43, pp.1, 2016, https://doi.org/10.1007/s00261-017-1325-y
  5. Imaging and minimally invasive endovascular therapy in the management of portal vein thrombosis vol.43, pp.8, 2016, https://doi.org/10.1007/s00261-017-1335-9
  6. Diagnostic performances of intravoxel incoherent motion and conventional diffusion-weighted imaging in the differential diagnosis of benign and malignant portal vein thrombus vol.43, pp.9, 2016, https://doi.org/10.1007/s00261-018-1467-6
  7. Diffusion-Weighted MRI for the Initial Viability Evaluation of Parasites in Hepatic Alveolar Echinococcosis: Comparison with Positron Emission Tomography vol.19, pp.1, 2018, https://doi.org/10.3348/kjr.2018.19.1.40
  8. The Diagnostic Performance of Liver MRI without Intravenous Contrast for Detecting Hepatocellular Carcinoma: A Case-Controlled Feasibility Study vol.19, pp.4, 2018, https://doi.org/10.3348/kjr.2018.19.4.568
  9. Diagnostic Accuracy of MRI for Detecting Inferior Vena Cava Wall Invasion in Renal Cell Carcinoma Tumor Thrombus Using Quantitative and Subjective Analysis vol.212, pp.3, 2016, https://doi.org/10.2214/ajr.18.20209
  10. 110 Patients with adenosquamous carcinomas of the pancreas (PASC): imaging differentiation of small (≤ 3 cm) versus large (> 3 cm) tumors vol.44, pp.7, 2019, https://doi.org/10.1007/s00261-019-01989-2
  11. Imaging and implications of tumor thrombus in abdominal malignancies: reviewing the basics vol.45, pp.4, 2016, https://doi.org/10.1007/s00261-019-02282-y
  12. Contrast-enhanced ultrasound for the characterization of portal vein thrombosis vs tumor-in-vein in HCC patients: a systematic review and meta-analysis vol.30, pp.5, 2016, https://doi.org/10.1007/s00330-019-06649-z
  13. MRI diffusion-weighted imaging detects a fresh portal vein thrombus as a high intensity lesion in a patient with a liver transplant: A case report vol.10, pp.12, 2016, https://doi.org/10.1177/20584601211069557