DOI QR코드

DOI QR Code

Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

  • Ha, Hojin (POSTECH Biotech Center, Pohang University of Science and Technology) ;
  • Kim, Guk Bae (Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kweon, Jihoon (Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Sang Joon (POSTECH Biotech Center, Pohang University of Science and Technology) ;
  • Kim, Young-Hak (Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Deok Hee (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yang, Dong Hyun (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Namkug (Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2016.01.20
  • Accepted : 2016.04.22
  • Published : 2016.07.01

Abstract

Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI), National Research Foundation of Korea (NRF)

References

  1. Fisher AB, Chien S, Barakat AI, Nerem RM. Endothelial cellular response to altered shear stress. Am J Physiol Lung Cell Mol Physiol 2001;281:L529-L533 https://doi.org/10.1152/ajplung.2001.281.3.L529
  2. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985;5:293-302 https://doi.org/10.1161/01.ATV.5.3.293
  3. Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S, et al. Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 2012;5:457-466 https://doi.org/10.1161/CIRCIMAGING.112.973370
  4. Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, et al. Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 2013;6:499-507 https://doi.org/10.1161/CIRCIMAGING.113.000528
  5. Uretsky S, Gillam LD. Nature versus nurture in bicuspid aortic valve aortopathy: more evidence that altered hemodynamics may play a role. Circulation 2014;129:622-624 https://doi.org/10.1161/CIRCULATIONAHA.113.007282
  6. Slager CJ, Wentzel JJ, Gijsen FJ, Thury A, van der Wal AC, Schaar JA, et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2005;2:456-464 https://doi.org/10.1038/ncpcardio0298
  7. Groen HC, Gijsen FJ, van der Lugt A, Ferguson MS, Hatsukami TS, van der Steen AF, et al. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 2007;38:2379-2381 https://doi.org/10.1161/STROKEAHA.107.484766
  8. Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2011;13:7 https://doi.org/10.1186/1532-429X-13-7
  9. Harloff A, Nussbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, et al. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med 2010;63:1529-1536 https://doi.org/10.1002/mrm.22383
  10. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 4D flow MRI. J Magn Reson Imaging 2012;36:1015-1036 https://doi.org/10.1002/jmri.23632
  11. Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, et al. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann Biomed Eng 2009;37:516-531 https://doi.org/10.1007/s10439-008-9609-6
  12. Harloff A, Albrecht F, Spreer J, Stalder AF, Bock J, Frydrychowicz A, et al. 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 2009;61:65-74 https://doi.org/10.1002/mrm.21774
  13. Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5T and 3.0T in combination with parallel imaging. Magn Reson Med 2007;57:127-140 https://doi.org/10.1002/mrm.21109
  14. Hsiao A, Tariq U, Alley MT, Lustig M, Vasanawala SS. Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI. J Magn Reson Imaging 2015;41:376-385 https://doi.org/10.1002/jmri.24578
  15. Petersson S, Sigfridsson A, Dyverfeldt P, Carlhall CJ, Ebbers T. Retrospectively gated intracardiac 4D flow MRI using spiral trajectories. Magn Reson Med 2016;75:196-206 https://doi.org/10.1002/mrm.25612
  16. Dyverfeldt P, Gardhagen R, Sigfridsson A, Karlsson M, Ebbers T. On MRI turbulence quantification. Magn Reson Imaging 2009;27:913-922 https://doi.org/10.1016/j.mri.2009.05.004
  17. Dyverfeldt P, Hope MD, Tseng EE, Saloner D. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc Imaging 2013;6:64-71 https://doi.org/10.1016/j.jcmg.2012.07.017
  18. Dyverfeldt P, Kvitting JP, Sigfridsson A, Engvall J, Bolger AF, Ebbers T. Assessment of fluctuating velocities in disturbed cardiovascular blood flow: in vivo feasibility of generalized phase-contrast MRI. J Magn Reson Imaging 2008;28:655-663 https://doi.org/10.1002/jmri.21475
  19. Kim GB, Ha H, Kweon J, Lee SJ, Kim YH, Yang DH, et al. Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI. Magn Reson Imaging 2016;34:371-375 https://doi.org/10.1016/j.mri.2015.11.010
  20. von Spiczak J, Crelier G, Giese D, Kozerke S, Maintz D, Bunck AC. Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS One 2015;10:e0139025 https://doi.org/10.1371/journal.pone.0139025
  21. Donati F, Figueroa CA, Smith NP, Lamata P, Nordsletten DA. Non-invasive pressure difference estimation from PC-MRI using the work-energy equation. Med Image Anal 2015;26:159-172 https://doi.org/10.1016/j.media.2015.08.012
  22. Ebbers T, Wigstrom L, Bolger AF, Engvall J, Karlsson M. Estimation of relative cardiovascular pressures using time-resolved three-dimensional phase contrast MRI. Magn Reson Med 2001;45:872-879 https://doi.org/10.1002/mrm.1116
  23. Krittian SB, Lamata P, Michler C, Nordsletten DA, Bock J, Bradley CP, et al. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med Image Anal 2012;16:1029-1037 https://doi.org/10.1016/j.media.2012.04.003
  24. Markl M, Wallis W, Brendecke S, Simon J, Frydrychowicz A, Harloff A. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn Reson Med 2010;63:1575-1582 https://doi.org/10.1002/mrm.22353
  25. Markl M, Wallis W, Strecker C, Gladstone BP, Vach W, Harloff A. Analysis of pulse wave velocity in the thoracic aorta by flow-sensitive four-dimensional MRI: reproducibility and correlation with characteristics in patients with aortic atherosclerosis. J Magn Reson Imaging 2012;35:1162-1168 https://doi.org/10.1002/jmri.22856
  26. Pelc NJ, Bernstein MA, Shimakawa A, Glover GH. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1991;1:405-413 https://doi.org/10.1002/jmri.1880010404
  27. Bernstein MA, Ikezaki Y. Comparison of phase-difference and complex-difference processing in phase-contrast MR angiography. J Magn Reson Imaging 1991;1:725-729 https://doi.org/10.1002/jmri.1880010620
  28. Dumoulin CL, Souza SP, Walker MF, Wagle W. Three-dimensional phase contrast angiography. Magn Reson Med 1989;9:139-149 https://doi.org/10.1002/mrm.1910090117
  29. Hofman MB, Visser FC, van Rossum AC, Vink QM, Sprenger M, Westerhof N. In vivo validation of magnetic resonance blood volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 1995;33:778-784 https://doi.org/10.1002/mrm.1910330606
  30. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 2015;17:72 https://doi.org/10.1186/s12968-015-0174-5
  31. Frydrychowicz A, Berger A, Munoz Del Rio A, Russe MF, Bock J, Harloff A, et al. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla. Eur Radiol 2012;22:1122-1130 https://doi.org/10.1007/s00330-011-2353-6
  32. Meckel S, Leitner L, Bonati LH, Santini F, Schubert T, Stalder AF, et al. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI. Neuroradiology 2013;55:389-398 https://doi.org/10.1007/s00234-012-1103-z
  33. Rivera-Rivera LA, Turski P, Johnson KM, Hoffman C, Berman SE, Kilgas P, et al. 4D flow MRI for intracranial hemodynamics assessment in Alzheimer's disease. J Cereb Blood Flow Metab 2015 Nov 25 [Epub]. http://dx.doi. org/10.1177/0271678X15617171
  34. Schrauben E, Wahlin A, Ambarki K, Spaak E, Malm J, Wieben O, et al. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J Magn Reson Imaging 2015;42:1458-1464 https://doi.org/10.1002/jmri.24900
  35. Strecker C, Harloff A, Wallis W, Markl M. Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J Magn Reson Imaging 2012;36:1097-1103 https://doi.org/10.1002/jmri.23735
  36. Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med 1998;39:300-308 https://doi.org/10.1002/mrm.1910390218
  37. Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, et al. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med 2003;50:791-801 https://doi.org/10.1002/mrm.10582
  38. Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 1993;3:521-530 https://doi.org/10.1002/jmri.1880030315
  39. Abdul-Rahman HS, Gdeisat MA, Burton DR, Lalor MJ, Lilley F, Moore CJ. Fast and robust three-dimensional best path phase unwrapping algorithm. Appl Opt 2007;46:6623-6635 https://doi.org/10.1364/AO.46.006623
  40. Chavez S, Xiang QS, An L. Understanding phase maps in MRI: a new cutline phase unwrapping method. IEEE Trans Med Imaging 2002;21:966-977 https://doi.org/10.1109/TMI.2002.803106
  41. Jenkinson M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn Reson Med 2003;49:193-197 https://doi.org/10.1002/mrm.10354
  42. Salfity MF, Huntley JM, Graves MJ, Marklund O, Cusack R, Beauregard DA. Extending the dynamic range of phase contrast magnetic resonance velocity imaging using advanced higher-dimensional phase unwrapping algorithms. J R Soc Interface 2006;3:415-427 https://doi.org/10.1098/rsif.2005.0096
  43. Salfity MF, Ruiz PD, Huntley JM, Graves MJ, Cusack R, Beauregard DA. Branch cut surface placement for unwrapping of undersampled three-dimensional phase data: application to magnetic resonance imaging arterial flow mapping. Appl Opt 2006;45:2711-2722 https://doi.org/10.1364/AO.45.002711
  44. Szumowski J, Coshow WR, Li F, Quinn SF. Phase unwrapping in the three-point Dixon method for fat suppression MR imaging. Radiology 1994;192:555-561 https://doi.org/10.1148/radiology.192.2.8029431
  45. Bustamante M, Petersson S, Eriksson J, Alehagen U, Dyverfeldt P, Carlhall CJ, et al. Atlas-based analysis of 4D flow CMR: automated vessel segmentation and flow quantification. J Cardiovasc Magn Reson 2015;17:87 https://doi.org/10.1186/s12968-015-0190-5
  46. van Pelt R, Olivan Bescos J, Breeuwer M, Clough RE, Groller ME, ter Haar Romenij B, et al. Exploration of 4D MRI blood flow using stylistic visualization. IEEE Trans Vis Comput Graph 2010;16:1339-1347 https://doi.org/10.1109/TVCG.2010.153
  47. van Pelt R, Nguyen H, ter Haar Romeny B, Vilanova A. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. Int J Comput Assist Radiol Surg 2012;7:217-224 https://doi.org/10.1007/s11548-011-0642-9
  48. Bagan P, Vidal R, Martinod E, Destable MD, Tremblay B, Dumas JL, et al. Cerebral ischemia during carotid artery cross-clamping: predictive value of phase-contrast magnetic resonance imaging. Ann Vasc Surg 2006;20:747-752 https://doi.org/10.1007/S10016-006-9126-8
  49. Hope TA, Hope MD, Purcell DD, von Morze C, Vigneron DB, Alley MT, et al. Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn Reson Imaging 2010;28:41-46 https://doi.org/10.1016/j.mri.2009.05.042
  50. Garcia J, Barker AJ, van Ooij P, Schnell S, Puthumana J, Bonow RO, et al. Assessment of altered three-dimensional blood characteristics in aortic disease by velocity distribution analysis. Magn Reson Med 2015;74:817-825 https://doi.org/10.1002/mrm.25466
  51. Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 2003;17:499-506 https://doi.org/10.1002/jmri.10272
  52. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 2008;60:1218-1231 https://doi.org/10.1002/mrm.21778
  53. Mathieu J, Scott J. An introduction to turbulent flow. Cambridge: Cambridge University Press, 2000:10-11
  54. Dyverfeldt P, Sigfridsson A, Kvitting JP, Ebbers T. Quantification of intravoxel velocity standard deviation and turbulence intensity by generalizing phase-contrast MRI. Magn Reson Med 2006;56:850-858 https://doi.org/10.1002/mrm.21022
  55. Wong KK, Kelso RM, Worthley SG, Sanders P, Mazumdar J, Abbott D. Cardiac flow analysis applied to phase contrast magnetic resonance imaging of the heart. Ann Biomed Eng 2009;37:1495-1515 https://doi.org/10.1007/s10439-009-9709-y
  56. Elbaz MS, Calkoen EE, Westenberg JJ, Lelieveldt BP, Roest AA, van der Geest RJ. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis. J Cardiovasc Magn Reson 2014;16:78 https://doi.org/10.1186/s12968-014-0078-9
  57. Reiter G, Reiter U, Kovacs G, Olschewski H, Fuchsjager M. Blood flow vortices along the main pulmonary artery measured with MR imaging for diagnosis of pulmonary hypertension. Radiology 2015;275:71-79 https://doi.org/10.1148/radiol.14140849
  58. Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech 1995;285:69-94 https://doi.org/10.1017/S0022112095000462
  59. Zhou J, Adrian RJ, Balachandar S. Autogeneration of near-wall vortical structures in channel flow. Phys Fluids 1996;8:288-290 https://doi.org/10.1063/1.868838
  60. Zhou J, Adrian RJ, Balachandar S, Kendall TM. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 1999;387:353-396 https://doi.org/10.1017/S002211209900467X
  61. Adrian RJ, Christensen KT, Liu ZC. Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 2000;29:275-290 https://doi.org/10.1007/s003489900087
  62. Currie PJ, Seward JB, Reeder GS, Vlietstra RE, Bresnahan DR, Bresnahan JF, et al. Continuous-wave Doppler echocardiographic assessment of severity of calcific aortic stenosis: a simultaneous Doppler-catheter correlative study in 100 adult patients. Circulation 1985;71:1162-1169 https://doi.org/10.1161/01.CIR.71.6.1162
  63. Cohn JN, Quyyumi AA, Hollenberg NK, Jamerson KA. Surrogate markers for cardiovascular disease: functional markers. Circulation 2004;109(25 Suppl 1):IV31-IV46 https://doi.org/10.1161/01.CIR.0000115207.45378.BC
  64. Stamm RB, Martin RP. Quantification of pressure gradients across stenotic valves by Doppler ultrasound. J Am Coll Cardiol 1983;2:707-718 https://doi.org/10.1016/S0735-1097(83)80311-8
  65. Bock J, Frydrychowicz A, Lorenz R, Hirtler D, Barker AJ, Johnson KM, et al. In vivo noninvasive 4D pressure difference mapping in the human aorta: phantom comparison and application in healthy volunteers and patients. Magn Reson Med 2011;66:1079-1088 https://doi.org/10.1002/mrm.22907
  66. Ebbers T, Farneack G. Improving computation of cardiovascular relative pressure fields from velocity MRI. J Magn Reson Imaging 2009;30:54-61 https://doi.org/10.1002/jmri.21775
  67. Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging 2010;31:711-718 https://doi.org/10.1002/jmri.22083
  68. Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, et al. Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol 2009;44:669-675 https://doi.org/10.1097/RLI.0b013e3181ae99b5
  69. Eriksson J, Bolger AF, Ebbers T, Carlhall CJ. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging 2013;14:417-424 https://doi.org/10.1093/ehjci/jes159
  70. Calkoen EE, Roest AA, Kroft LJ, van der Geest RJ, Jongbloed MR, van den Boogaard PJ, et al. Characterization and improved quantification of left ventricular inflow using streamline visualization with 4DFlow MRI in healthy controls and patients after atrioventricular septal defect correction. J Magn Reson Imaging 2015;41:1512-1520 https://doi.org/10.1002/jmri.24735
  71. Hope MD, Hope TA, Crook SE, Ordovas KG, Urbania TH, Alley MT, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging 2011;4:781-787 https://doi.org/10.1016/j.jcmg.2011.05.004
  72. Berg P, Stucht D, Janiga G, Beuing O, Speck O, Thevenin D. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng 2014;136:041003 https://doi.org/10.1115/1.4026108
  73. Schnell S, Ansari SA, Vakil P, Wasielewski M, Carr ML, Hurley MC, et al. Three-dimensional hemodynamics in intracranial aneurysms: influence of size and morphology. J Magn Reson Imaging 2014;39:120-131 https://doi.org/10.1002/jmri.24110
  74. Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, Belke DD, et al. Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 2015;66:892-900 https://doi.org/10.1016/j.jacc.2015.06.1310
  75. Jou LD, Lee DH, Morsi H, Mawad ME. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol 2008;29:1761-1767 https://doi.org/10.3174/ajnr.A1180
  76. van Ooij P, Potters WV, Guedon A, Schneiders JJ, Marquering HA, Majoie CB, et al. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. J Magn Reson Imaging 2013;38:876-884 https://doi.org/10.1002/jmri.24051
  77. Isoda H, Ohkura Y, Kosugi T, Hirano M, Takeda H, Hiramatsu H, et al. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 2010;52:921-928 https://doi.org/10.1007/s00234-009-0635-3
  78. Zajac J, Eriksson J, Dyverfeldt P, Bolger AF, Ebbers T, Carlhall CJ. Turbulent kinetic energy in normal and myopathic left ventricles. J Magn Reson Imaging 2015;41:1021-1029 https://doi.org/10.1002/jmri.24633
  79. Tyszka JM, Laidlaw DH, Asa JW, Silverman JM. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging. J Magn Reson Imaging 2000;12:321-329 https://doi.org/10.1002/1522-2586(200008)12:2<321::AID-JMRI15>3.0.CO;2-2
  80. Yang GZ, Kilner PJ, Wood NB, Underwood SR, Firmin DN. Computation of flow pressure fields from magnetic resonance velocity mapping. Magn Reson Med 1996;36:520-526 https://doi.org/10.1002/mrm.1910360404
  81. Bley TA, Johnson KM, Francois CJ, Reeder SB, Schiebler ML, R Landgraf B, et al. Noninvasive assessment of transstenotic pressure gradients in porcine renal artery stenoses by using vastly undersampled phase-contrast MR angiography. Radiology 2011;261:266-273 https://doi.org/10.1148/radiol.11101175
  82. Lum DP, Johnson KM, Paul RK, Turk AS, Consigny DW, Grinde JR, et al. Transstenotic pressure gradients: measurement in swine--retrospectively ECG-gated 3D phase-contrast MR angiography versus endovascular pressure-sensing guidewires. Radiology 2007;245:751-760 https://doi.org/10.1148/radiol.2453061946
  83. Moftakhar R, Aagaard-Kienitz B, Johnson K, Turski PA, Turk AS, Niemann DB, et al. Noninvasive measurement of intra-aneurysmal pressure and flow pattern using phase contrast with vastly undersampled isotropic projection imaging. AJNR Am J Neuroradiol 2007;28:1710-1714 https://doi.org/10.3174/ajnr.A0648
  84. Wentland AL, Wieben O, François CJ, Boncyk C, Munoz Del Rio A, Johnson KM, et al. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J Magn Reson Imaging 2013;37:853-859 https://doi.org/10.1002/jmri.23877
  85. Sigovan M, Hope MD, Dyverfeldt P, Saloner D. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging 2011;34:1226-1230 https://doi.org/10.1002/jmri.22800
  86. Manka R, Busch J, Crelier G, Luscher TF, Kozerke S. Pre-and post-operative assessment of valvular and aortic flow using 4D flow magnetic resonance imaging. Eur Heart J 2013;34:1423 https://doi.org/10.1093/eurheartj/eht038
  87. Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, et al. k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 2014;72:522-533 https://doi.org/10.1002/mrm.24925
  88. Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med 2008;60:1329-1336 https://doi.org/10.1002/mrm.21763
  89. Kecskemeti S, Johnson K, Wu Y, Mistretta C, Turski P, Wieben O. High resolution three-dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k-space trajectory. J Magn Reson Imaging 2012;35:518-527 https://doi.org/10.1002/jmri.23501
  90. Petersson S, Dyverfeldt P, Gardhagen R, Karlsson M, Ebbers T. Simulation of phase contrast MRI of turbulent flow. Magn Reson Med 2010;64:1039-1046 https://doi.org/10.1002/mrm.22494
  91. Yoon YE, Hong YJ, Kim HK, Kim JA, Na JO, Yang DH, et al. 2014 Korean guidelines for appropriate utilization of cardiovascular magnetic resonance imaging: a joint report of the Korean Society of Cardiology and the Korean Society of Radiology. Korean J Radiol 2014;15:659-688 https://doi.org/10.3348/kjr.2014.15.6.659
  92. Park SH, Han PK, Choi SH. Physiological and functional magnetic resonance imaging using balanced steady-state free precession. Korean J Radiol 2015;16:550-559 https://doi.org/10.3348/kjr.2015.16.3.550

Cited by

  1. The Advantages of Viscous Dissipation Rate over Simplified Power Loss as a Fontan Hemodynamic Metric vol.46, pp.3, 2016, https://doi.org/10.1007/s10439-017-1950-1
  2. Variations in pulsatile flow around stenosed microchannel depending on viscosity vol.14, pp.1, 2016, https://doi.org/10.1371/journal.pone.0210993
  3. Quantification of Hemodynamic Parameters Using Four-Dimensional Flow MRI vol.80, pp.2, 2016, https://doi.org/10.3348/jksr.2019.80.2.239
  4. Haemodynamic assessment of bicuspid aortic valve aortopathy: a systematic review of the current literature vol.55, pp.4, 2019, https://doi.org/10.1093/ejcts/ezy312
  5. Four-Dimensional Flow Magnetic Resonance Imaging for Assessment of Velocity Magnitudes and Flow Patterns in The Human Carotid Artery Bifurcation: Comparison with Computational Fluid Dynamics vol.9, pp.4, 2019, https://doi.org/10.3390/diagnostics9040223
  6. Biomechanical Forces and Atherosclerosis: From Mechanism to Diagnosis and Treatment vol.16, pp.3, 2020, https://doi.org/10.2174/1573403x15666190730095153
  7. A Dual-VENC Four-Dimensional Flow MRI Framework for Analysis of Subject-Specific Heterogeneous Nonlinear Vessel Deformation vol.142, pp.11, 2016, https://doi.org/10.1115/1.4048649
  8. Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets vol.197, pp.None, 2016, https://doi.org/10.1016/j.cmpb.2020.105729
  9. Kardiale Magnetresonanztomographie : Trends und Entwicklungen vol.60, pp.12, 2016, https://doi.org/10.1007/s00117-020-00766-3
  10. Computed tomography and magnetic resonance imaging assessment of aortic valve stenosis: an update vol.4, pp.4, 2020, https://doi.org/10.23838/pfm.2020.00093
  11. In-vitro and In-Vivo Assessment of 4D Flow MRI Reynolds Stress Mapping for Pulsatile Blood Flow vol.9, pp.None, 2016, https://doi.org/10.3389/fbioe.2021.774954
  12. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? vol.11, pp.4, 2021, https://doi.org/10.3390/jpm11040253
  13. Improving Blood Flow Visualization of Recirculation Regions at Carotid Bulb in 4D Flow MRI Using Semi-Automatic Segmentation with ITK-SNAP vol.11, pp.10, 2021, https://doi.org/10.3390/diagnostics11101890
  14. Intracranial Flow Velocity Quantification Using Non-Contrast Four-Dimensional Flow MRI: A Prospective Comparative Study with Transcranial Doppler Ultrasound vol.12, pp.1, 2022, https://doi.org/10.3390/diagnostics12010023