DOI QR코드

DOI QR Code

Separation and Adsorption-Desorption Characteristics of Heavy Rare Earth Elements (Gd, Tb, Dy) using P507 Resin

P507 추출수지를 이용한 중희토류 원소(Gd, Tb, Dy)의 흡탈착 분리특성에 관한 연구

  • Lee, Sungeun (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Joung Woon (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeon, Jong Hyuk (Department of Chemical Engineering, Kwangwoon University) ;
  • Jun, Hong Myeong (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Jin Young (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Han, Choon (Department of Chemical Engineering, Kwangwoon University)
  • 이성은 (광운대학교 화학공학과) ;
  • 김정운 (광운대학교 화학공학과) ;
  • 전종혁 (광운대학교 화학공학과) ;
  • 전홍명 (광운대학교 화학공학과) ;
  • 이진영 (한국지질자원연구원 광물자원연구본부) ;
  • 한춘 (광운대학교 화학공학과)
  • Received : 2016.06.16
  • Accepted : 2016.08.09
  • Published : 2016.08.31

Abstract

This study was conducted to establish the adsorption-desorption mechanism and the optimum condition of chromatographic operation for separations of heavy rare earth elements (Gd, Tb, Dy) using a p507-containing resin. By employing Langmuir and Freundlich isotherm together with pseudo first and second order kinetics, absorption-desorption reaction mechanism was investigated. Langmuir and Freundlich isotherm was applied under assumption that adsorption reaction occurs in form of monolayer, and because the result was identical to the assumption, now we know adsorption of heavy rare earth elements occurs in form of monolayer. Concerning the pseudo first and second order kinetic, the pseudo second order seemed to be more suitable to represent heavy rare earth element adsorption mechanism. By using the extraction chromatography to separate heavy rare earth elements, ${\alpha}^{Tb}_{Gd}=1.24$, and ${\alpha}^{Dy}_{Tb}=1.03$ were confirmed in eluent HCl 0.25 M which indicates almost perfect separations of three elements. Furthermore, as concentrations of eluent became higher, the resolution value decreased and the elution area got shortened.

본 연구에서는 P507을 포함하고 있는 추출수지를 사용하여 중희토류 원소인 Gd, Tb, Dy의 흡 탈착 반응 메커니즘을 고찰하고 분리를 위한 최적 크로마토그래피법의 반응조건을 도출하였다. 흡 탈착 반응 메커니즘은 흡착등온식인 Langmuir, Freundlich 흡착등온식과, 흡착속도모델인 유사 1차, 2차 반응속도식을 적용하여 고찰하였다. 중희토류 원소의 흡착반응은 단분자층으로 일어난다고 가정하여 흡착등온식을 적용하였고, 잘 일치하여 흡착반응이 단분자층으로 이루어짐을 추측할 수 있었다. 시간별 실험을 진행하여 유사 1차, 2차 반응속도식에 적용한 결과 유사 2차 반응속도식이 추출수지의 중희토류 흡착 메커니즘을 더 잘 표현하였고, 평형흡착량의 실험값은 이론값에 부합하였다. 크로마토그래피법을 이용하여 용리액 HCl 0.25 M 농도조건에서 ${\alpha}^{Tb}_{Gd}=1.24$, ${\alpha}^{Dy}_{Tb}=1.03$으로 분리계수 1이상의 높은 분리조건을 확인하였다. HCl 용리액을 사용하였을 때, 용리액의 농도가 높을수록 분리도는 감소하고 용출구간은 줄어드는 경향을 확인하였다.

Keywords

References

  1. P. Henderson, 2013 : Rare Earth Element Geochemistry, pp. 1-32, 115-152.
  2. Koh, S.-M., 2009 : Situation of the Supply-demand and Potentiality of REE Resources in South Korea. J. Miner. Soc. Korea, 22, pp. 417-422.
  3. Marc Humphries, 2010 : Rare Earth Elements: The Global Supply Chain, pp. 1-15.
  4. J Jensen, AR Mackintosh, 1991 : Rare earth magnetism, pp. 1-7.
  5. R Elliott, 2013 : Magnetic properties of rare earth metals, pp. 1-14.
  6. Jiri Starry, 2013 : The solvent extraction of metal chelates, pp 21-49.
  7. Nishihama, S., Sakaguchi, N., Hirai, T., Komasawa, I., 2002 : Extraction and separation of rare earth metals using microcapsules containing bis(2-ethylhexyl)phosphinic acid. Hydrometallurgy, 64, pp. 35-42. https://doi.org/10.1016/S0304-386X(02)00011-7
  8. Friedrich G. Helfferich, 1962 : Ion exchange, pp. 1-21, 421-499.
  9. Horwitz, E. P., Dietz, M. L., Chiarizia, R., Diamond, H., Essling, A. M., Graczyk, D., 1992 : Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal. Chim. Acta., 266, pp. 25-37. https://doi.org/10.1016/0003-2670(92)85276-C
  10. Horwitz, E. P., McAlister, D. R., Dietz, M. L., 2006 : Extraction Chromatography Versus Solvent Extraction: How Similar are They?, Sep. SCI. Technol., 41, pp. 2163-2182. https://doi.org/10.1080/01496390600742849
  11. Pin, C., Briot, D., Bassin, C., Poitrasson, F., 1994 : Concomitant separation of strontium and samariumneodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta., 298, pp. 209-217. https://doi.org/10.1016/0003-2670(94)00274-6
  12. Wang, Z., Ma, G.., Lu, J., Liao, W., Li, D., 2002 : Separation of heavy rare earth elements with extraction resin containing 1-hexyl-4-ethyloctyl isopropylphosphonic acid. Hydrometallurgy, 66(1), pp. 95-99. https://doi.org/10.1016/S0304-386X(02)00109-3
  13. Jia, Q., Wang, Z. H., Li, D. Q., Niu, C. J., 2004 : Adsorption of heavy rare earth(III) with extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid. Journal of Alloys and Compounds, 374(1), pp. 434-437. https://doi.org/10.1016/j.jallcom.2003.11.056
  14. Kondo, K., Kamio, E., 2002 : Separation of rare earth metals with a polymeric microcapsule membrane. Desalination, 144(1-3), 249-254. https://doi.org/10.1016/S0011-9164(02)00320-X
  15. Nasab, M. E., Sam, A., Milani, S. A., 2011 : Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy, 106(3), 141-147. https://doi.org/10.1016/j.hydromet.2010.12.014
  16. Liu, J. S., Chen, H., Chen, X. Y., Guo, Z. L., Hu, Y. C., Liu, C. P., Sun, Y. Z., 2006 : Extraction and separation of In(III), Ga(III) and Zn(II) from sulfate solution using extraction resin. Hydrometallurgy, 82, pp. 137-143. https://doi.org/10.1016/j.hydromet.2006.03.008
  17. LIAO, C., JIAO, Y., LIANG, Y., JIANG, P., NIE, H., 2010 : Adsorption-extraction mechanism of heavy rare earth by Cyanex272-P507 impregnated resin. T. Nonferr. Metal. Soc., 20, pp. 1511-1516. https://doi.org/10.1016/S1003-6326(09)60330-7
  18. Abreu, R. D., Morais, C. A., 2014 : Study on Separation of Heavy Rare Earth Elements by Solvent Extraction with Organophosphorus Acids and Amine Reagents. Minerals Eng., 61, pp. 82-87. https://doi.org/10.1016/j.mineng.2014.03.015
  19. Na, Choon-Ki, Jeong Jin-Hwa, Park Hyun-Ju, 2011 : Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents (1). Korean Soc. Environ. Eng., 33, 606-616 https://doi.org/10.4491/KSEE.2011.33.8.606
  20. Desta, M. B., 2013 : Batch Sorption Experiments: Langmuir and Freundlich Isotherm Studies for the Adsorption of Textile Metal Ions onto Teff Straw (Eragrostis tef) Agricultural Waste. J. Therm, 2013, 1-6.
  21. Miyake, Y., Ishida, H., Tanaka, S., Kolev, S. D., 2013 : Theoretical analysis of the pseudo-second order kinetic model of adsorption. Application to the adsorption of Ag(I) to mesoporous silica microspheres functionalized with thiol groups. Chem. Eng. J, 218, 350-357. https://doi.org/10.1016/j.cej.2012.11.089