DOI QR코드

DOI QR Code

Study on the Surface Morphology and Control of Impurity by Organic Additive for Tin electro-refining

주석 전해정련에서 유기첨가제에 따른 표면형상 및 전해불순물 제어에 관한 연구

  • Received : 2016.06.06
  • Accepted : 2016.08.08
  • Published : 2016.08.31

Abstract

The electro-refining process was performed to purify the casted tin crude metal from waste tin in methanesulfonic acid. The surface morphologies of electrodeposited tin on cathode were observed, the dendrite and delamination were inhibited by glycol group of organic additive. The impurity concentrations of tin crude metal and deposited metal were analyzed using ICP-OES. Quantitative analysis on casted tin crude metal showed that it consists of tin with 97.280 wt.% and several impurity metals of Ag, Cu, Pb, Ni, and etc. After tin electro-refining, the purity of tin increased up to 99.956 wt.%. Reduction current by cyclic voltammetry seems to be closely related to behavior of impurity in tin electro-refining.

주석 폐자원으로부터 회수된 주석 조금속을 메탄술폰산 전해액에서 전해정련을 수행하여 고순도 주석을 회수하고자 하였다. 전해정련층 표면형상을 관찰한 결과 주석 전해정련 시 glycol계 유기첨가제를 통해 균일하게 주석이 전착되었고, 수지상 형상 및 박리현상은 발생하지 않았다. 주석 조금속 및 전해정련층의 순도를 ICP-OES로 분석한 결과 주석 조금속은 은, 구리, 납, 니켈 등의 불순물이 함유되어 97.280 wt.%의 주석순도를 나타내었고, 전해정련을 수행 후 순도 분석결과 주석의 순도는 99.956 wt.%으로 증가하였다. 순환 전압전류 시험결과 유기첨가제는 주석 전해정련 시 불순물의 환원반응을 억제 또는 가속시키는 역할을 하는 것으로 판단된다.

Keywords

References

  1. A. Tuncuk, et al., 2012: Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling, Minerals Engineering, 25(1), pp. 28-37. https://doi.org/10.1016/j.mineng.2011.09.019
  2. S. J. Hong and J. Y. Lee, 2015: Trends of Recycling of Indium-Tin-Oxide (ITO) Target Materials for Transparent Conductive Electrodes (TCEs), Clean Technology, 21(4), pp. 209-216. https://doi.org/10.7464/ksct.2015.21.4.209
  3. P. Kaewboonthong, et al., 2011: Recovery of metal from lead-free solder dross, International Conference on Engineering and Technology, pp. 705-708.
  4. K. W. Lee, et al., 2014: Separation and Recovery of Tin and Indium from Spent ITO Sludge, J. Kor. Inst. Resources Recycling, 23(2), pp.53-60. https://doi.org/10.7844/kirr.2014.23.2.53
  5. J. H. Lee, et al., 2006: Necessity of Low Melting Temperature Pb-free Solder Alloy and Characteristics of Representative Alloys, J. Kor. Weld. Soc., 24(2), pp. 125-136.
  6. K. W. Lee, et al., 2015: Produce of High Purity Tin from Spent Solder by Electro Refining, J. Kor. Inst. Resources Recycling, 24(2), pp.62-68. https://doi.org/10.7844/kirr.2015.24.2.62
  7. G. Rimaszeki, T. Kulcsar and T. Kekesi, 2012: Investigation and optimization of tin electrorefining in hydrochloric acid solutions, J. Appl. Electrochem. 42(8), pp. 573-584. https://doi.org/10.1007/s10800-012-0433-1
  8. R. E. Gana, et al,. 1993: The anode-support system: an alternative for the electrorefining of tin in sulpuric acid medium, J. Appl. Electrochem,. 23(1), pp. 60-65 https://doi.org/10.1007/BF00241577
  9. G. S. Tzeng, et al., 1996: Effects of additives on the electrodeposition of tin from an acidic Sn(II) bath, J. Appl. Electrochem., 26(4), pp. 419-423. https://doi.org/10.1007/BF00251327
  10. N. M. Martyak and R. Seefeldt, 2004: Additive-effects during plating in acid tin methanesulfonate electrolytes, Electrochimica Acta, 49(25), pp. 4303-4311. https://doi.org/10.1016/j.electacta.2004.03.039