DOI QR코드

DOI QR Code

Low Complexity Gauss Newton Variable Forgetting Factor RLS for Time Varying System Estimation

시변 시스템 추정을 위한 연산량이 적은 가우스 뉴턴 가변 망각인자를 사용하는 RLS 알고리즘

  • Lim, Jun-Seok (Sejong University Department of Electronic Engineering) ;
  • Pyeon, Yong-Guk (GangWon State University Department of Information and Communication)
  • Received : 2016.06.21
  • Accepted : 2016.09.08
  • Published : 2016.09.30

Abstract

In general, a variable forgetting factor is applied to the RLS algorithm for the time-varying parameter estimation in the non-stationary environments. The introduction of a variable forgetting factor to RLS needs heavy additional calculation complexity. We propose a new Gauss Newton variable forgetting factor RLS algorithm which needs small amount of calculation as well as estimates the better parameters in time-varying nonstationary environment. The algorithm performs as good as the conventional Gauss Newton variable forgetting factor RLS and the required additional calculation complexity reduces from $O(N^2)$ to O(N).

일반적으로 RLS 알고리즘에서 비정재성(non-stationary) 환경에서 시간에 따라 변하는 파라메터를 좀 더 잘 추정하기 위해서 가변 망각인자를 사용한다. RLS 알고리즘에서 가변 망각인자를 사용할 때는 연산량이 많이 증가하는 단점이 수반된다. 본 논문에서는 연산량이 적은 가우스 뉴턴 가변망각인자 RLS 알고리즘을 제안한다. 본 방법은 기존 가우스 뉴턴 가변망각인자 RLS와 거의 유사한 성능을 보유하고 있을 뿐만 아니라 부가로 요구되는 연산량을 $O(N^2)$에서 O(N)으로 줄이는 효과도 준다.

Keywords

References

  1. S. Han, C. Song, and J. Choi, "Interference cancellation for wireless LAN systems using full duplex communications," J. KICS, vol. 40, no. 12, pp. 2353-2362, Dec. 2015. https://doi.org/10.7840/kics.2015.40.12.2353
  2. J. Lim and Y. Pyeon, "Kernel RLS algorithm using variable forgetting factor," J. KICS, vol. 40, no. 9, pp. 1793-1801, Sept. 2105.
  3. M. Choi and S. Lee, "Comparison study of channel estimation algorithm for 4S maritime communications," J. KICS, vol. 38, no. 3, pp. 288-293, Mar. 2013.
  4. Simon Haykin, Adaptive filter theory, Prentice-Hall, Inc., 4th Ed., 2002.
  5. S. Song, J. Lim, S. Baek, and K. Sung, "Gauss newton variable forgetting factor recursive least squares for time varying parameter tracking," Electronics Lett., vol. 36, no. 11, pp. 988-990, Nov. 2000. https://doi.org/10.1049/el:20000727
  6. S. Song, "Self-tuning adaptive algorithm and applications," Ph.D. dissertation, Seoul National Univ. 2003.
  7. S. Song and K. Sung, "Reduced complexity self-tuning adaptive algorithms in application to channel estimation," IEEE Trans. Commun., vol. 55, no. 8, pp. 1448-1452, Aug. 2007. https://doi.org/10.1109/TCOMM.2007.902493

Cited by

  1. Performance Comparison of Acoustic Equalizers using Adaptive Algorithms in Shallow Water Condition vol.22, pp.2, 2016, https://doi.org/10.6109/jkiice.2018.22.2.253