DOI QR코드

DOI QR Code

3GPP 협대역 사물인터넷 시스템에서 단말의 특징을 고려한 커버리지 클래스 적응 기법

Coverage Class Adaptation Schemes Considering Device Characteristics in a 3GPP Narrowband IoT System

  • Nam, Yujin (Department of Electronic Engineering, Sogang University) ;
  • So, Jaewoo (Department of Electronic Engineering, Sogang University) ;
  • Na, Minsoo (5G Tech. Lab, Corporate R&D Center, SK Telecom) ;
  • Choi, Changsoon (5G Tech. Lab, Corporate R&D Center, SK Telecom)
  • 투고 : 2016.06.02
  • 심사 : 2016.09.21
  • 발행 : 2016.09.30

초록

3GPP (3rd Generation Partnership Project)에서는 IoT (Internet of Things) 서비스의 제공을 위해 초다수의 단말을 지원할 수 있는 NB-IoT (narrowband IoT) 시스템 표준화를 진행 중이다. NB-IoT 시스템은 넓은 커버리지 내 초다수의 단말들을 서비스하면서 시스템의 성능을 향상시키기 위해 커버리지 클래스를 사용하며, 이를 위해 이동 중인 단말은 기지국과 단말 사이의 채널 환경이나 거리 등과 같은 커버리지 클래스 변경 기준에 따라 커버리지 클래스를 변경한다. 하지만 종래의 NB-IoT 시스템 표준에서 단말은 고정된 커버리지 클래스 변경 기준을 사용하기 때문에 이동 중인 단말이 커버리지 클래스를 변경하는 경우 시스템 성능이 열화 된다. 본 논문에서는 IoT 단말의 위치 또는 채널 상태에 따라 동적으로 커버리지 클래스를 변경함으로써 NB-IoT 시스템의 성능을 향상시키는 커버리지 클래스 변경 기법을 제안한다. 시뮬레이션을 통해 제안하는 커버리지 클래스 변경 기법이 기존 커버리지 클래스 변경 기법 대비 시그널링 오버헤드와 PDCCH 디코딩 오류율을 모두 감소시키는 것을 확인하였다.

3rd Generation Partnership Project (3GPP) is the progressing standardization of the narrowband IoT (NB-IoT) system to support massive devices for the Internet of Things (IoT) services. The NB-IoT system uses a coverage class technique to increase the performance of the NB-IoT system while serving massive devices in very wide coverage area. A moving device can change the coverage class according to the distance or the channel state between the base station and the moving device. However, in the conventional NB-IoT standard, the performance of the NB-IoT system degrades because the coverage class is changed based on the fixed criterion. This paper proposes the coverage class adaptation schemes to increase the performance of the NB-IoT system by dynamically change the coverage class according to the location or the channel state of the device. Simulation results show that the proposed coverage class adaptation scheme decreases both the signaling overhead and the PDCCH decoding error rate in comparison with the conventional coverage class adaptation scheme in the 3GPP standard.

키워드

참고문헌

  1. H. Kwon and N. Kang, "Analysis on energy consumption required for building DTLS session between lightweight devices in Internet of Things," J. KICS, vol. 40, no. 8, pp. 1588-1596, Aug. 2015. https://doi.org/10.7840/kics.2015.40.8.1588
  2. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015-2020, White Paper, Feb. 2016.
  3. J. Park, S. Shin, and N. Kang, "Mutual authentication and key agreement scheme between lightweight devices in Internet of Things," J. KICS, vol. 38B, no. 9, pp. 707-714, Sep. 2013. https://doi.org/10.7840/kics.2013.38B.9.707
  4. S. Lee, H. Kang, H. Yoo, Y. Jeong, and D. Kim, "Two solutions for unnecessary path update problem in multi-sink based IoT networks," J. KICS, vol. 40, no. 12, pp. 2450-2460, Dec. 2015. https://doi.org/10.7840/kics.2015.40.12.2450
  5. L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, "Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends," IEEE Commun. Mag., vol. 53, no. 9, pp. 74-81, Sep. 2015. https://doi.org/10.1109/MCOM.2015.7263349
  6. S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, "Network function virtualization in 5G," IEEE Commun. Mag., vol. 54, no. 4, pp. 84-91, Apr. 2016. https://doi.org/10.1109/MCOM.2016.7452271
  7. X. Xiong, K. Zheng, R. Xu, W. Xiang, and P. Chatzimisios, "Low power wide area machine-to-machine networks: Key techniques and prototype," IEEE Commun. Mag., vol. 53, no. 9, pp. 64-71, Sep. 2015.
  8. M. Anteur, V. Deslandes, N. Thomas, and A.-L. Beylot, "Ultra narrow band technique for low power wide area communications," in Proc. IEEE Globecom, pp. 1-6, San Diego, CA, USA, Dec. 2015.
  9. J. Petajajarvi, K. Mikhaylov, A. Roivainen, T. Hanninen, and M. Pettissalo, "On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology," in Proc. International Conference on ITS Telecommunications (ITST), pp. 55-59, Copenhagen, Denmark, Dec. 2015.
  10. IEEE P802.15, Wireless Personal Area Networks, On-ramp wireless dynamic direct sequence spread spectrum (D-DSSS) proposal for 802.15.4g, Jul. 2009.
  11. 3GPP TSG-RAN, New work item: Narrowband IOT (NB-IOT), 3GPP TSG-RAN Meeting #69, Phoenix, USA, RP-151621, Sep. 2015.
  12. IEEE Std. 802.16e, Physical and medium access control layers for combined fixed and mobile operation in licensed bands, Feb. 2006.
  13. 3GPP TSG-RAN, Physical channels and modulation (Release 13), 3GPP TS 36.211 V13.0.0, Jan. 2016.
  14. Nokia, LTE-M-optimizing LTE for the Internet of Things, White Paper, May 2015.
  15. 3GPP TSG-GERAN, Cellular system support for ultra-low complexity and low throughput internet of things (CIoT) (Release 13), 3GPP TR 45.820 V13.1.0, Dec. 2015.
  16. 3GPP TSG-GERAN, Coverage class selection, adaptation and load balancing, 3GPP TSG-GERAN #68, Anaheim, California, USA, GP-101078, Nov. 2015.
  17. 3GPP TSG-GERAN, pCr to TR 45.820 - NB-changes to downlink common control channel, 3GPP TSG-GERAN Meeting #67, Yinchuan, China, GP-150825, Aug. 2015.

피인용 문헌

  1. 우수토실 일체형 하수유량조절장치 원격관리시스템 개발 vol.9, pp.6, 2018, https://doi.org/10.15207/jkcs.2018.9.6.061