참고문헌
- Bruneel, H. and Kim, B. G. (1993), Discrete-time models for communication systems including ATM, Kluwer Academic Publishers, New York.
- Cox, D. R. (1955), The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Mathematical Proceedings of the Cambridge Philosophical Society, 51(3), 433-441. https://doi.org/10.1017/S0305004100030437
- Chae, K. C., Kim, N. K., and Choi, D. W. (2002), An interpretation of the equations for the GI/GI/c/K queue length distribution, Journal of the Korean Institute of Industrial Engineers, 28(4), 390-396.
-
Chae, K. C., Kim, N. K., and Yoon, B. K. (2004), On the queue length distribution for the
$GI/G/1/K/V_M$ queue, Stochastic Analysis and Applications, 22(3), 647-656. https://doi.org/10.1081/SAP-120030449 - Chae, K. C., Lee, D. H., and Kim, N. K. (2008), On the modified supplementary variable technique for the discrete-time GI/G/1/K queue, Journal of the Korean Operations Research and Management Science Society, 33(1), 107-115.
- Chaudhry, M .L. (1993), Alternative numerical solutions of stationary queueing-time distribution in discrete-time queues : GI/G/1, Journal of the Operational Research Society, 44(1), 1035-1051. https://doi.org/10.1057/jors.1993.172
-
Chaudhry, M. L. and Gupta, U. C. (2001), Computing waiting-time probabilities in the discrete-time queue :
$GI^X/G/1$ , Performance Evaluation, 43(2/3), 123-131. https://doi.org/10.1016/S0166-5316(00)00038-9 - Choi, D. W., Kim, N. K., and Chae, K. C. (2005), A two-moment approximation for the GI/G/c queue with finite capacity, Informs Journal on Computing, 17(1), 75-81. https://doi.org/10.1287/ijoc.1030.0058
-
Eliazar, I. (2008), On the discrete-time
$G/GI/{\infty}$ queue, Probability in the Engineering and Informational Sciences, 22(4), 557-585. https://doi.org/10.1017/S0269964808000338 - Hunter, J. J. (1983), Mathematical techniques of applied probability, discrete time models : techniques and applications, Academic Press, New York, 2.
- Hasslinger, G. (1995), A polynomial factorization approach to the discrete time GI/G/1/(N) queue size distribution, Performance Evaluation, 23(3), 217-240. https://doi.org/10.1016/0166-5316(94)00024-E
- Kim, N. K. and Chae, K. C. (2003), Transform-free analysis of the GI/G/1/K queue through the decomposed Little's formula, Computers and Operations Research, 30(3), 353-365. https://doi.org/10.1016/S0305-0548(01)00101-0
-
Linwong, P., Kato, N., and Nemoto, Y. (2004), A polynomial factorization approach for the discrete time
$GI^X/G/1/K$ queue, Methodology And Computing In Applied Probability, 6(3), 277-291. https://doi.org/10.1023/B:MCAP.0000026560.42106.7a - Murata, M. and Miyahara, H. (1991), An analytic solution of the waiting time distribution for the discrete-time GI/G/1 queue, Performance Evaluation, 13(2), 87-95. https://doi.org/10.1016/0166-5316(91)90042-2
- Takagi, H. (1993), Queueing analysis, North-Holland, Amsterdam, 2.
- Wolff, R. W. (1989), Stochastic modeling and the theory of queues, Prentice-Hall, New Jersey.