DOI QR코드

DOI QR Code

수신기의 기울기 및 방위를 고려한 가시광 통신기반 3차원 실내 위치인식에 대한 연구

A study on 3-D indoor localization based on visible-light communication considering the inclination and azimuth of the receiver

  • 투고 : 2016.08.08
  • 심사 : 2016.08.30
  • 발행 : 2016.09.30

초록

수신된 신호세기강도(RSSI)를 이용한 가시광통신기반 실내위치인식은 다른 무선 통신 위치인식 기법에 비해 정확성이 높기 때문에 많이 연구되고 있다. 하지만 수신기의 기울기와 방위에 따라 RSSI가 변할 수 있기 때문에 동일한 위치에서 수신된 신호조차도 큰 오차가 발생할 수 있다. 따라서 본 논문에서는 수신기의 기울기 변화에 의해 발생하는 오차를 감소시키기 위해 가우스-뉴턴(Gauss-Newton) 기법을 적용한 가시광통신기반 3차원 실내위치인식 알고리즘을 제안한다. 제안한 시스템은 수신된 RSSI를 선형 최소자승기법(LSM)을 적용하여 수신기의 초기 위치를 선정함으로써 연산량을 줄이고 수신기의 방위각과 기울기의 변화에 의하여 획득된 RSSI를 포함하는 3차원 비선형 모델에 가우스-뉴턴 기법을 사용하여 정확도를 개선하였다. 제안한 알고리즘의 타당성을 검증하기 위하여 16개의 LED 조명이 설치된 $6{\times}6{\times}3m^3$의 실내 공간에서 수신기의 기울기 및 방위각 변화에 따른 기존의 선형 LSM 기반 삼변측량기법과 제안한 방법에 대한 오차를 비교 및 분석하였다. 실험결과 제안한 알고리즘 위치 정확도가 기존의 선형 LSM 기반 삼변측량기법 대비 82.5% 개선되었다.

Indoor localization based on visible-light communication using the received signal strength intensity (RSSI) has been widely studied because of its high accuracy compared with other wireless localization methods. However, because the RSSI can vary according to the inclination and azimuth of the receiver, a large error can occur, even at the same position. In this paper, we propose a visible-light communication-based 3-D indoor positioning algorithm using the Gauss-Newton technique in order to reduce the errors caused by the change in the inclination of the receiver. The proposed system reduces the amount of computations by selecting the initial position of the receiver through the linear least-squares method (LSM), which is applied to the RSSIs, and improves the position accuracy by applying the Gauss-Newton technique to the 3-D nonlinear model that contains the RSSIs acquired by the changes in the azimuth and inclination of the receiver. In order to verify the validity of the proposed algorithm in an indoor space with dimensions of $6{\times}6{\times}3m$ where 16 LED lights are installed, we compare and analyze the errors of the conventional linear LSM-based trilateration technique and the proposed algorithm according to the changes in the inclination and azimuth of the receiver. The experimental results show that the location accuracy of the proposed algorithm is improved by 82.5% compared to the conventional LSM-based trilateration technique.

키워드

참고문헌

  1. H. J. Kwon, M. G. Kim, Y. S. Kim, and S. G. Lee, "Lifetime test of batteries for BLE modules for site identification of vessel's crews and passengers (SIVCP)," Journal of the Korean Society of Marine Engineering, vol. 39, no. 7, pp. 754-759, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.7.754
  2. W. O. Kim, J. S. Kim, and W. C. Park, "Improvement of citadel structure on board ship using FDS," Journal of the Korean Society of Marine Engineering, vol. 39, no. 3, pp. 306-311, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.3.306
  3. W. O. Kim, J. S. Kim, and W. C. Park, "A study on the improvement of survival rate of the passengers and crews according to FDS analysis," Journal of the Korean Society of Marine Engineering, vol. 39, no. 3, pp. 312-317, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.3.312
  4. H. J. Kwon, H. S. Yang, and S. G. LEE, "Site monitoring of crews and passengers on board by the BLE and PLM combination," Journal of the Korean Society of Marine Engineering, vol. 39, no. 4, pp. 463-467, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.4.463
  5. G. W. Yim, S. H. Lee, S. Y. Kim and N. S. Kang, "Development of unified communication for marine VoIP service," Journal of the Korean Society of Marine Engineering, vol. 39, no. 7, pp. 744-753, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.7.744
  6. J. H. Koo and K. I. Hwang, "A Koreans' consciousness survey on the onboard safety of domestic passenger ship," Journal of the Korean Society of Marine Engineering, vol. 38, no. 4, pp. 495-501, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.4.495
  7. K. I. Hwang, "Comparative study on predictions of passengers' evacuation performances before and after the remodelling of MV SEWOL," Journal of the Korean Society of Marine Engineering, vol. 39, no. 1, pp. 105-114, 2014 (in Korean).
  8. Z. Deng, Y. Yu, X. Yuan, N. Wan, and L. Yang, "Situation and development tendency of indoor positioning," China Communications, vol. 10, no. 3, pp. 42-55, 2013. https://doi.org/10.1109/CC.2013.6488829
  9. C. H. Huang, L. H. Lee, C. C. Ho, L. L. Wu, and Z. H. Lai, "Real-time RFID indoor positioning system based on Kalman-filter drift removal and Heron-bilateration location estimation," IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 3, pp. 728-739, 2015. https://doi.org/10.1109/TIM.2014.2347691
  10. H. Liu, H. Darabi, P. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on Systems, Man, and Cybernetics, vol. 37, no. 6, pp. 1067-1080, 2007. https://doi.org/10.1109/TSMCC.2007.905750
  11. C. Yang and H. R. Shao, "WiFi-based indoor positioning," IEEE Communications Magazine, vol. 53, no. 3, pp. 150-157, 2015.
  12. J. H. Seong, T. W. Lim, J. S. Kim, S. G. Park, and D. H. Seo, "An improvement algorithm for localization using adjacent node and distance variation analysis techniques in a ship," Journal of the Korean Society of Marine Engineering, vol. 37, no. 2, pp. 213-219, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.2.213
  13. J. H. Kim, S. G. Lee, J. S. Kim, J. W. Kim, and D. H. Seo, "A study on indoor navigation system using localization based on wireless communication," Journal of the Korean Society of Marine Engineering, vol. 37, no. 1, pp. 114-120, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.1.114
  14. J. H. Seong, J. S. Park, S. H. Lee, and D. H. Seo, "Indoor localization algorithm based on WLAN using modified database and selective operation," Journal of the Korean Society of Marine Engineering, vol. 37, no. 8, pp. 932-938, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.8.932
  15. H. J. Cho, J. S. Kim, S. G. Lee, J. W Kim, and D. H. Seo, "Fixed node reduction technique using relative coordinate estimation algorithm," Journal of the Korean Society of Marine Engineering, vol. 37, no. 2, pp. 220-226, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.2.220
  16. J. H. Kim, H. J. Kim, J. S. Kim, S. G. Lee, and D. H. Seo, "An indoor localization approach using RSSI and LQI based on IEEE 802.15.4," Journal of the Korean Society of Marine Engineering, vol. 38, no. 1, pp. 92-98, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.1.92
  17. J. H. Kim, H. J. Kim, J. S. Kim, S. G. Lee, and D. H. Seo, "Relative azimuth estimation algorithm using rotational displacement," Journal of the Korean Society of Marine Engineering, vol. 38, no. 2, pp. 188-194, 2014. https://doi.org/10.5916/jkosme.2014.38.2.188
  18. H. J. Cho, S. G. Lee, W. H. Cho, D. S. Noh, and D. H. Seo, "Self-positioning fusion system based on estimaion of relative coordinates," Journal of the Korean Society of Marine Engineering, vol. 38, no. 5, pp. 566-572, 2014. https://doi.org/10.5916/jkosme.2014.38.5.566
  19. J. H. Kim, J. H. Sung, Y. S. Ha, and D. H. Seo, "Improved adaptive smoothing filter for indoor localization using RSSI," Journal of the Korean Society of Marine Engineering, vol. 39, no. 2, pp. 179-186, 2015. https://doi.org/10.5916/jkosme.2015.39.2.179
  20. H. J. Cho, W. Y. Kim, Y. I. Joo, and D. H. Seo, "Robust relative localization using a novel modified rounding estimation technique," Journal of the Korean Society of Marine Engineering, vol. 39, no. 2, pp. 187-194, 2015. https://doi.org/10.5916/jkosme.2015.39.2.187
  21. K. R. Sohn, "Implementation of the equalization circuits for high bandwidth visible light communications using phosphorescent white LED," Journal of the Korean Society of Marine Engineering, vol. 39, No. 4, pp. 473-477, 2015. (in Korean). https://doi.org/10.5916/jkosme.2015.39.4.473
  22. M. S. Kim and K. R. Sohn, "Performance investigation of visible light communication using super bright white LED and fresnel lens," Journal of the Korean Society of Marine Engineering, vol. 39, no. 1, pp. 63-67, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.1.63
  23. M. S. Kim and K. R. Sohn, "Implementation of underwater visible light communication system interlinked with bluetooth", Journal of the Korean Society of Marine Engineering, vol. 38, no. 7, pp. 923-928, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.7.923
  24. K. R. Sohn, "Performance analysis of the visible light communication in seawater channel," Journal of the Korean Society of Marine Engineering, vol. 37, no. 5, pp. 527-532, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.5.527
  25. K. R. Sohn, "A study on the short-range underwater communication using visible LEDs," Journal of the Korean Society of Marine Engineering, vol. 37, no. 4, pp. 425-430, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.4.425
  26. W. Y. Kim, H. C. Zin, J. C. Kim, and D. H. Seo, "A study on indoor visible light communication positioning using RSS according to variation of receiving angle," Proceedings of the 40th KOSME Spring Conference, p. 111, 2016 (in Korean).
  27. X. Sun, Y. Zou, J. Duan, and A. Shi, "The positioning accuracy analysis of AOA-based indoor visible light communication system," IEEE International Conference on Optoelectronics and Microelectronics (ICOM), pp. 186-190, 2015.
  28. T. O. Wang, Y. A. Sekercioglu, A. Neild, and J. Armstrong, "Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems," Journal of Lightwave Technology, vol. 31, no. 20, pp. 3302-3308, 2013. https://doi.org/10.1109/JLT.2013.2281592
  29. T. H. Do and M. Yoo, "TDOA-based indoor positioning using visible light," Photonic Network Communications, vol. 27, no. 2, pp. 80-88, 2014. https://doi.org/10.1007/s11107-014-0428-4
  30. W. Y. Kim, S. G. Park, W. H. Cho, D. S. Noh, and D. H. Seo, "A study on indoor visible light communication localization based on manchester code using walsh code," Journal of the Korean Society of Marine Engineering, vol. 39, no. 9, pp. 959-966, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.9.959
  31. S. Yamaguchi, V. V. Mai, T. C. Thang, and A. T. Pham, "Design and performance evaluation of VLC indoor positioning system using optical orthogonal codes," 5th IEEE International Conference on Communications and Electronics(ICCE), pp. 54-59, 2015.
  32. D. Y. Kim and K. Y. Yi, "RSSI-based indoor localization method using virtually overlapped visible light," The transactions of The Korean Institute of Electrical Engineers, vol. 63, no. 12, pp. 1697-1703, 2014 (in Korean). https://doi.org/10.5370/KIEE.2014.63.12.1697
  33. A. Sahin, Y. S. Eroglu, I. Guvenc, N. Pala, and M. Yuksel, "Hybrid 3-D localization for visible light communication systems," Journal of Lightwave Technology, vol. 33, no. 22, pp. 4589-4599, 2015. https://doi.org/10.1109/JLT.2015.2477502
  34. T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using led lights," IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 100-107, 2004. https://doi.org/10.1109/TCE.2004.1277847