DOI QR코드

DOI QR Code

Influence of Amino Acidic Additives on Properties of EPDM-g-MAH/ZnO Composites

  • Received : 2016.06.08
  • Accepted : 2016.06.15
  • Published : 2016.09.30

Abstract

Influence of amino acidic chemical on properties of maleic anhydride-grafted ethylene-propylene-diene terpolymer/zinc oxide (EPDM-g-MAH/ZnO) composites was investigated. 4-Aminosalicylic acid (ASA), 4-amino-2-methoxybenzoic acid (AMBA), 12-aminolauric acid (ALA), and glutamine (Gln) were employed as the amino acidic chemicals. Though small quantity (0.5 phr) of the amino acidic chemical was added to the EPDM-g-MAH/ZnO composite, the properties were notably changed. By adding the amino acidic chemical, the percent crystallinity and apparent crosslink density were reduced. Order of the percent crystallinity was related to that of the $pK_a$ values of amino acidic chemicals. By adding the amino acidic chemical, the basic tensile properties were on the whole improved. The experimental results were explained by the $pK_a$ values of amino acidic chemicals, change of zinc ionomer formation, and interactions between the additive and EPDM-g-MAH chain.

Keywords

References

  1. S.-S. Choi and H.-S. Chung, "Influence of Filler and Cure Systems on Whitening of EPDM Composites by Formation of Metal Salt", Elast. Compos., 47, 210 (2012). https://doi.org/10.7473/EC.2012.47.3.210
  2. Q. Zhao, X. Li, and J. Gao, "Aging Behavior and Mechanism of Ethylene-Propylene-Diene Monomer (EPDM) Rubber in Fluorescent UV/Condensation Weathering Environment", Polym. Degrad. Stab., 94, 339 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.12.007
  3. Q. Zhao, X. Li, J. Gao, and Z. Jia, "Evaluation of Ethylene-Propylene-Diene Monomer (EPDM) Aging in UV/Condensation Environment by Principal Component Analysis (PCA)", Mater. Lett., 63, 1647 (2009). https://doi.org/10.1016/j.matlet.2009.03.039
  4. H. Yu, G. Xu, X. Shen, X. Yan, C. Hu, and Y. Wang, "Corrosion Resistance and Infrared Emissivity Properties of EPDM (EPDM-g-MAH) Film on Low Infrared Emissivity PU/Cu Coating", Electrochim. Acta., 55, 1843 (2010). https://doi.org/10.1016/j.electacta.2009.10.077
  5. Y.-W. Chang, J. K. Mishra, S.-K. Kim, and D.-K Kim, "Effect of Supramolecular Hydrogen Bonded Network on the Properties of Maleated Ethylene Propylene Diene Rubber/Maleated High Density Polyethylene Blend Based Thermoplasticelastomer", Mater Lett., 60, 3118 (2006). https://doi.org/10.1016/j.matlet.2006.02.055
  6. S. Saikrasun and T. Amornsakchai, "Self-Reinforcing Elastomer Composites Based on Polyolefinic Thermoplastic Elastomer and Thermotropic Liquid Crystalline Polymer", J. Appl. Polym. Sci., 107, 2375 (2008). https://doi.org/10.1002/app.27092
  7. C. Yi, Z. Peng, H. Wang, M. Li, and C. Wang, "Synthesis and Characteristics of Thermoplastic Elastomer Based on Polyamide-6", Polym. Int., 60, 1728 (2011). https://doi.org/10.1002/pi.3140
  8. J. Markarian, "Thermoplastic Elastomer Compounds Continue Upward Trend", Plast. Addit. Comp., 10, 38 (2008).
  9. D. Yamaguchi, M. Cloitre, P. Panine, and L. Leibler, "Phase Behavior and Viscoelastic Properties of Thermoplastic Elastomer Gels Based on ABC Triblock Copolymers", Macromolecules, 38, 7798 (2005). https://doi.org/10.1021/ma050294e
  10. P. Pasbakhsh, H. Ismail, M. N. Ahmad Fauzi, and A. Abu Bakar, "Influence of Maleic Anhydride Grafted Ethylene Propylene Diene Monomer (MAH-g-EPDM) on the Properties of EPDM Nanocomposites Reinforced by Halloysite Nanotubes", Polym. Test., 28, 548 (2009). https://doi.org/10.1016/j.polymertesting.2009.04.004
  11. G. M. O. Barra, J. S. Crespo, J. R. Bertolino, V. Soldi, and A. T. Nunes Pires, "Maleic Anhydride Grafting on EPDM: Qualitative and Quantitative Determination", J. Braz. Chem. Soc., 10, 31 (1999). https://doi.org/10.1590/S0103-50531999000100006
  12. C. Shao, G. Xu, X. Shen, H. Yu, and X. Yan, "Infrared Emissivity and Corrosion-Resistant Property of Maleic Anhydride Grafted Ethylene-Propylene-Diene Terpolymer (EPDM-g-MAH)/Cu coatings", Surf. Coat. Technol., 204, 4075 (2010). https://doi.org/10.1016/j.surfcoat.2010.05.036
  13. W. S. Chow, A. A. Bakar, Z. A. Mohd Ishak, J. Karger-Kocsis, and U. S. Ishiaku, "Effect of Maleic Anhydride-Grafted Ethylene-Propylene Rubber on the Mechanical, Rheological and Morphological Properties of Organoclay Reinforced Polyamide 6/Polypropylene Nanocomposites", Eur. Polym. J., 41, 687 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.041
  14. O. Grigoryeva and J. Karger-Kocsis, "Melt Grafting of Maleic Anhydride onto an Ethylene-Propylene-Diene Terpolymer (EPDM)", Eur. Polym. J., 36, 1419 (2000). https://doi.org/10.1016/S0014-3057(99)00205-0
  15. C. D. Silva, B. Haidar, A. Vidal, J. M. Brendle, R. L. Dred, and L. Vidal, "Preparation of EPDM/Synthetic Montmorillonite Nanocomposites by Direct Compounding", J. Mater. Sci., 40, 1813 (2005). https://doi.org/10.1007/s10853-005-0701-0
  16. H.-M. Kwon and S.-S. Choi, "Characterization of Crosslinks of Maleic Anhydride-Grafted EPDM/Zinc Oxide Composite using Dichloroacetic Acid/Toluene Cosolvent and Extraction Temperature", Elast. Compos., 48, 288 (2013). https://doi.org/10.7473/EC.2013.48.4.288
  17. Y. Kim, H.-M. Kwon, S.-S. Choi, J. W. Bae, and J.-S. Kim, "X-Ray Diffraction and X-ray Photoelectron Spectroscopy Characterization of Maleic Anhydride-Grafted Ethylene-Propylene-Diene Terpolymer Based Thermoplastic Elastomers", Asian J. Chem., 25, 5277 (2013).
  18. S. Cherukuvada, G. Bolla, K. Sikligar, and A. Nangia, "4-Aminosalicylic Acid Adducts", Cryst. Growth Des., 13, 1551 (2013). https://doi.org/10.1021/cg301798s
  19. http://www.stenutz.eu/chem/pka.php?s=1&p=1.
  20. http://academics.keene.edu/rblatchly/Chem220/hand/npaa/aawpka.htm.
  21. http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference%20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf.
  22. http://sites.chem.colostate.edu/diverdi/all_courses/CRC%20reference% 20data/dissociation%20constants%20of%20organic%20acids%20and%20bases.pdf.
  23. http://acad.depauw.edu/harvey_web/Chem%20260/pdf%20files/DataTables/AcidDissConstants.PDF.