학습과 기억의 뇌파

Electroencephalography of Learning and Memory

  • 전현진 (인제대학교 일산백병원 임상감정인지기능연구소) ;
  • 이승환 (인제대학교 일산백병원 임상감정인지기능연구소)
  • Jeon, Hyeonjin (Clinical Emotion and Cognition Research Laboratory, Inje University, Ilsan Paik Hospital) ;
  • Lee, Seung-Hwan (Clinical Emotion and Cognition Research Laboratory, Inje University, Ilsan Paik Hospital)
  • 투고 : 2016.05.09
  • 심사 : 2016.07.04
  • 발행 : 2016.08.31

초록

This review will summarize EEG studies of learning and memory based on frequency bands including theta waves (4-7 Hz), gamma waves (> 30 Hz) and alpha waves (7-12 Hz). Authors searched and reviewed EEG papers especially focusing on learning and memory from PubMed. Theta waves are associated with acquisition of new information from stimuli. Gamma waves are connected with comparing and binding old information in preexisting memory and new information from stimuli. Alpha waves are linked with attention. Eventually it mediates the learning and memory process. Although EEG studies of learning and memory still have controversial issues, the future EEG studies will facilitate clinical benefits by virtue of more developed and encouraging prospects.

키워드

참고문헌

  1. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-1929. https://doi.org/10.1126/science.1099745
  2. Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 2007;30:317-324. https://doi.org/10.1016/j.tins.2007.05.001
  3. Llinas R, Urbano FJ, Leznik E, Ramirez RR, van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 2005;28:325-333. https://doi.org/10.1016/j.tins.2005.04.006
  4. Ribary U. Dynamics of thalamo-cortical network oscillations and human perception. Prog Brain Res 2005;150:127-142.
  5. Schnitzler A, Gross J. Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 2005;6:285-296. https://doi.org/10.1038/nrn1650
  6. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155-168. https://doi.org/10.1016/j.neuron.2006.09.020
  7. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010;90:1195-1268. https://doi.org/10.1152/physrev.00035.2008
  8. Jung R, Kornmuller AE. Eine methodik der ableitung iokalisierter potentialschwankungen aus subcorticalen hirngebieten. Eur Arch Psychiatry Clin Neurosci 1938;109:1-30.
  9. Landfield PW, McGaugh JL, Tusa RJ. Theta rhythm: a temporal correlate of memory storage processes in the rat. Science 1972;175:87-89. https://doi.org/10.1126/science.175.4017.87
  10. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 1997;81:893-926. https://doi.org/10.1016/S0306-4522(97)00239-X
  11. Maccaferri G. Stratum oriens horizontal interneurone diversity and hippocampal network dynamics. J Physiol 2005;562(Pt 1):73-80. https://doi.org/10.1113/jphysiol.2004.077081
  12. Goutagny R, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus. Nat Neurosci 2009;12:1491-1493. https://doi.org/10.1038/nn.2440
  13. Kepecs A, Uchida N, Mainen ZF. The sniff as a unit of olfactory processing. Chem Senses 2006;31:167-179. https://doi.org/10.1093/chemse/bjj016
  14. Berry SD, Thompson RF. Prediction of learning rate from the hippocampal electroencephalogram. Science 1978;200:1298-1300. https://doi.org/10.1126/science.663612
  15. Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 1978;201:160-163. https://doi.org/10.1126/science.663646
  16. Macrides F, Eichenbaum HB, Forbes WB. Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J Neurosci 1982;2:1705-1717. https://doi.org/10.1523/JNEUROSCI.02-12-01705.1982
  17. Mitchell SJ, Rawlins JN, Steward O, Olton DS. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats. J Neurosci 1982;2:292-302. https://doi.org/10.1523/JNEUROSCI.02-03-00292.1982
  18. Mizumori SJ, Perez GM, Alvarado MC, Barnes CA, McNaughton BL. Reversible inactivation of the medial septum differentially affects two forms of learning in rats. Brain Res 1990;528:12-20. https://doi.org/10.1016/0006-8993(90)90188-H
  19. M'Harzi M, Jarrard LE. Effects of medial and lateral septal lesions on acquisition of a place and cue radial maze task. Behav Brain Res 1992;49:159-165. https://doi.org/10.1016/S0166-4328(05)80160-3
  20. Klimesch W, Doppelmayr M, Russegger H, Pachinger T. Theta band power in the human scalp EEG and the encoding of new information. Neuroreport 1996;7:1235-1240. https://doi.org/10.1097/00001756-199605170-00002
  21. Osipova D, Takashima A, Oostenveld R, Fernandez G, Maris E, Jensen O. Theta and gamma oscillations predict encoding and retrieval of declarative memory. J Neurosci 2006;26:7523-7531. https://doi.org/10.1523/JNEUROSCI.1948-06.2006
  22. Robbe D, Buzsaki G. Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 2009;29:12597-12605. https://doi.org/10.1523/JNEUROSCI.2407-09.2009
  23. Rutishauser U, Ross IB, Mamelak AN, Schuman EM. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 2010;464:903-907. https://doi.org/10.1038/nature08860
  24. Liebe S, Hoerzer GM, Logothetis NK, Rainer G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat Neurosci 2012;15:456-462, S1-S2. https://doi.org/10.1038/nn.3038
  25. Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 1969;26:407-418. https://doi.org/10.1016/0013-4694(69)90092-3
  26. Terrazas A, Krause M, Lipa P, Gothard KM, Barnes CA, McNaughton BL. Self-motion and the hippocampal spatial metric. J Neurosci 2005;25:8085-8096. https://doi.org/10.1523/JNEUROSCI.0693-05.2005
  27. Berg RW, Kleinfeld D. Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 2003;89:104-117. https://doi.org/10.1152/jn.00600.2002
  28. Berg RW, Whitmer D, Kleinfeld D. Exploratory whisking by rat is not phase locked to the hippocampal theta rhythm. J Neurosci 2006; 26:6518-6522. https://doi.org/10.1523/JNEUROSCI.0190-06.2006
  29. Otero-Millan J, Troncoso XG, Macknik SL, Serrano-Pedraza I, Martinez-Conde S. Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. J Vis 2008;8:21.1-18.
  30. Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci 2013;36:295-312. https://doi.org/10.1146/annurev-neuro-062012-170330
  31. Winson J. Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalogr Clin Neurophysiol 1974;36:291-301. https://doi.org/10.1016/0013-4694(74)90171-0
  32. Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 2001;29:145-156. https://doi.org/10.1016/S0896-6273(01)00186-6
  33. Montgomery SM, Sirota A, Buzsaki G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 2008;28:6731-6741. https://doi.org/10.1523/JNEUROSCI.1227-08.2008
  34. Vertes RP. Memory consolidation in sleep; dream or reality. Neuron 2004;44:135-148. https://doi.org/10.1016/j.neuron.2004.08.034
  35. Keizer AW, Verschoor M, Verment RS, Hommel B. The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures. Int J Psychophysiol 2010;75:25-32. https://doi.org/10.1016/j.ijpsycho.2009.10.011
  36. Herrmann CS, Munk MH, Engel AK. Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn Sci 2004;8:347-355. https://doi.org/10.1016/j.tics.2004.06.006
  37. Keil A, Muller MM, Ray WJ, Gruber T, Elbert T. Human gamma band activity and perception of a gestalt. J Neurosci 1999;19:7152-7161. https://doi.org/10.1523/JNEUROSCI.19-16-07152.1999
  38. Engelhard B, Ozeri N, Israel Z, Bergman H, Vaadia E. Inducing $\gamma$ oscillations and precise spike synchrony by operant conditioning via brain-machine interface. Neuron 2013;77:361-375. https://doi.org/10.1016/j.neuron.2012.11.015
  39. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995;18:555-586. https://doi.org/10.1146/annurev.ne.18.030195.003011
  40. Rodriguez R, Kallenbach U, Singer W, Munk MH. Short- and longterm effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci 2004;24:10369-10378. https://doi.org/10.1523/JNEUROSCI.1839-04.2004
  41. von Stein A, Chiang C, Konig P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci U S A 2000;97:14748-14753. https://doi.org/10.1073/pnas.97.26.14748
  42. Spaak E, Bonnefond M, Maier A, Leopold DA, Jensen O. Layer-specific entrainment of $\gamma$-band neural activity by the $\alpha$ rhythm in monkey visual cortex. Curr Biol 2012;22:2313-2318. https://doi.org/10.1016/j.cub.2012.10.020
  43. Galambos R, Makeig S, Talmachoff PJ. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A 1981;78:2643-2647. https://doi.org/10.1073/pnas.78.4.2643
  44. Basar E. EEG-dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Basar E, editor. Dynamics of sensory and cognitive processing by the brain. New York: Springer;1988. p.30-55.
  45. Sheer DE. Sensory and cognitive 40-Hz event-related potentials: Behavioral correlates, brain function, and clinical application. In: Basar E, Bullock TH, editors. Brain Dynamics. New York: Springer; 1989. p.339-374.
  46. Pantev C, Makeig S, Hoke M, Galambos R, Hampson S, Gallen C. Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci U S A 1991;88:8996-9000. https://doi.org/10.1073/pnas.88.20.8996
  47. Snyder JS, Large EW. Gamma-band activity reflects the metric structure of rhythmic tone sequences. Brain Res Cogn Brain Res 2005;24:117-126. https://doi.org/10.1016/j.cogbrainres.2004.12.014
  48. Keil A, Gruber T, Muller MM. Functional correlates of macroscopic high-frequency brain activity in the human visual system. Neurosci Biobehav Rev 2001;25:527-534. https://doi.org/10.1016/S0149-7634(01)00031-8
  49. Minami T, Goto K, Kitazaki M, Nakauchi S. Effects of color information on face processing using event-related potentials and gamma oscillations. Neuroscience 2011;176:265-273. https://doi.org/10.1016/j.neuroscience.2010.12.026
  50. Muller MM, Junghofer M, Elbert T, Rochstroh B. Visually induced gamma-band responses to coherent and incoherent motion: a replication study. Neuroreport 1997;8:2575-2579. https://doi.org/10.1097/00001756-199707280-00031
  51. Tallon C, Bertrand O, Bouchet P, Pernier J. Gamma-range activity evoked by coherent visual stimuli in humans. Eur J Neurosci 1995;7:1285-1291. https://doi.org/10.1111/j.1460-9568.1995.tb01118.x
  52. Tallon-Baudry C, Bertrand O, Delpuech C, Permier J. Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci 1997;17:722-734. https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997
  53. Lachaux JP, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L, et al. The many faces of the gamma band response to complex visual stimuli. Neuroimage 2005;25:491-501. https://doi.org/10.1016/j.neuroimage.2004.11.052
  54. Basar-Eroglu C, Struber D, Kruse P, Basar E, Stadler M. Frontal gamma-band enhancement during multistable visual perception. Int J Psychophysiol 1996;24:113-125. https://doi.org/10.1016/S0167-8760(96)00055-4
  55. Lee SH, Kim DW, Kim EY, Kim S, Im CH. Dysfunctional gammaband activity during face structural processing in schizophrenia patients. Schizophr Res 2010;119:191-197. https://doi.org/10.1016/j.schres.2010.02.1058
  56. Pantev C. Evoked and induced gamma-band activity of the human cortex. Brain Topogr 1995;7:321-330. https://doi.org/10.1007/BF01195258
  57. Kaukoranta E, Reinikainen K. Somatosensory evoked magnetic fields from SI: An interpretation of the spatiotemporal field pattern and effects of stimulus repetition rate. Helsinki: Helsinki University of Technology;1985.
  58. Pfurtscheller G, Flotzinger D, Neuper C. Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. Electroencephalogr Clin Neurophysiol 1994;90:456-460. https://doi.org/10.1016/0013-4694(94)90137-6
  59. Salenius S, Salmelin R, Neuper C, Pfurtscheller G, Hari R. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci Lett 1996;213:75-78. https://doi.org/10.1016/0304-3940(96)12796-8
  60. Brown P, Salenius S, Rothwell JC, Hari R. Cortical correlate of the Piper rhythm in humans. J Neurophysiol 1998;80:2911-2917. https://doi.org/10.1152/jn.1998.80.6.2911
  61. Gruber T, Muller MM, Keil A, Elbert T. Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 1999;110:2074-2085. https://doi.org/10.1016/S1388-2457(99)00176-5
  62. Pulvermuller F, Birbaumer N, Lutzenberger W, Mohr B. High-frequency brain activity: its possible role in attention, perception and language processing. Prog Neurobiol 1997;52:427-445. https://doi.org/10.1016/S0301-0082(97)00023-3
  63. Tiitinen H, Sinkkonen J, Reinikainen K, Alho K, Lavikainen J, Naatanen R. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 1993;364:59-60. https://doi.org/10.1038/364059a0
  64. Martinovic J, Gruber T, Ohla K, Muller MM. Induced gamma-band activity elicited by visual representation of unattended objects. J Cogn Neurosci 2009;21:42-57. https://doi.org/10.1162/jocn.2009.21004
  65. Jensen O, Lisman JE. An oscillatory short-term memory buffer model can account for data on the Sternberg task. J Neurosci 1998;18:10688-10699. https://doi.org/10.1523/JNEUROSCI.18-24-10688.1998
  66. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J. Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 1998;18:4244-4254. https://doi.org/10.1523/JNEUROSCI.18-11-04244.1998
  67. Sauseng P, Klimesch W, Heise KF, Gruber WR, Holz E, Karim AA, et al. Brain oscillatory substrates of visual short-term memory capacity. Curr Biol 2009;19:1846-1852. https://doi.org/10.1016/j.cub.2009.08.062
  68. Tallon-Baudry C. Oscillatory synchrony and human visual cognition. J Physiol Paris 2003;97:355-363. https://doi.org/10.1016/j.jphysparis.2003.09.009
  69. Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arambel-Liu S, Greenblatt R, et al. Neural activity when people solve verbal problems with insight. PLoS Biol 2004;2:E97. https://doi.org/10.1371/journal.pbio.0020097
  70. Keil A, Muller MM, Gruber T, Wienbruch C, Elbert T. Human largescale oscillatory brain activity during an operant shaping procedure. Brain Res Cogn Brain Res 2001;12:397-407. https://doi.org/10.1016/S0926-6410(01)00094-5
  71. Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res 1983;287:139-171.
  72. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 1995;15(1 Pt 1):47-60. https://doi.org/10.1523/JNEUROSCI.15-01-00047.1995
  73. Jensen O, Lisman JE. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn Mem 1996;3:279-287. https://doi.org/10.1101/lm.3.2-3.279
  74. Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 2006;50:145-157. https://doi.org/10.1016/j.neuron.2006.02.023
  75. O'Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 1993;3:317-330. https://doi.org/10.1002/hipo.450030307
  76. Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J Neurosci 2007;27:12176-12189. https://doi.org/10.1523/JNEUROSCI.3761-07.2007
  77. Carr MF, Karlsson MP, Frank LM. Transient slow gamma synchrony underlies hippocampal memory replay. Neuron 2012;75:700-713. https://doi.org/10.1016/j.neuron.2012.06.014
  78. Cruikshank RM. Human occipital brain potentials as affected by intensity-duration variables of visual stimulation. J Exp Psychol 1937;21:625-641. https://doi.org/10.1037/h0062705
  79. Jasper HH, Cruikshank RM. Electroencephalography II, Visual stimulation and the after image as affecting the occipital alpha rhythm. J Gen Psychol 1937;7:17:29-48.
  80. Loomis AI, Harvey EN, Hobart G. Electrical potentials of the human brain. J Exp Psychol 1936;19:249. https://doi.org/10.1037/h0062089
  81. Paskewitz DA, Orne MT. Visual effects on alpha feedback training. Science 1973;181:360-363. https://doi.org/10.1126/science.181.4097.360
  82. Blanchard EB, Young LD. Clinical applications of biofeedback training. A review of evidence. Arch Gen Psychiatry 1974;30:573-589. https://doi.org/10.1001/archpsyc.1974.01760110003001
  83. Lynch JJ, Paskewitz DA, Orne MT. Some factors in the feedback control of human alpha rhythm. Psychosom Med 1974;36:399-410. https://doi.org/10.1097/00006842-197409000-00003
  84. Pfurtscheller G, Stancak A Jr, Neuper C. Event-related synchronization (ERS) in the alpha band--an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 1996;24:39-46. https://doi.org/10.1016/S0167-8760(96)00066-9
  85. Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, et al. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur J Neurosci 2005;22:2917-2926. https://doi.org/10.1111/j.1460-9568.2005.04482.x
  86. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 2007;53:63-88. https://doi.org/10.1016/j.brainresrev.2006.06.003
  87. Bonnefond M, Jensen O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol 2012;22:1969-1974. https://doi.org/10.1016/j.cub.2012.08.029
  88. Begleiter H, Platz A. Cortical evoked potentials to semantic stimuli. Psychophysiology 1969;6:91-100. https://doi.org/10.1111/j.1469-8986.1969.tb02887.x
  89. Johnston VS, Miller DR, Burleson MH. Multiple P3s to emotional stimuli and their theoretical significance. Psychophysiology 1986;23:684-694. https://doi.org/10.1111/j.1469-8986.1986.tb00694.x
  90. Baeyens F, Hermans D, Eelen P. The role of CS-US contingency in human evaluative conditioning. Behav Res Ther 1993;31:731-737. https://doi.org/10.1016/0005-7967(93)90003-D
  91. Baeyens F, Vansteenwegen D, Hermans D, Eelen P. Human evaluative flavor-taste conditioning: conditions of learning and underlying processes. Psychologica Belgica 2001;41:169-186.
  92. Rozin P, Wrzesniewski A, Byrnes D. The elusiveness of evaluative conditioning. Learn Motiv 1998;29:397-415. https://doi.org/10.1006/lmot.1998.1012
  93. Staats AW, Staats CK. Attitudes established by classical conditioning. J Abnorm Psychol 1958;57:37-40. https://doi.org/10.1037/h0042782
  94. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 1999;29:169-195. https://doi.org/10.1016/S0165-0173(98)00056-3
  95. Heib DP, Hoedlmoser K, Anderer P, Gruber G, Zeitlhofer J, Schabus M. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link? J Cogn Neurosci 2015;27:1648-1658. https://doi.org/10.1162/jocn_a_00804
  96. Lithfous S, Tromp D, Dufour A, Pebayle T, Goutagny R, Despres O. Decreased theta power at encoding and cognitive mapping deficits in elderly individuals during a spatial memory task. Neurobiol Aging 2015;36:2821-2829. https://doi.org/10.1016/j.neurobiolaging.2015.07.007
  97. Basar E. A review of gamma oscillations in healthy subjects and in cognitive impairment. Int J Psychophysiol 2013;90:99-117. https://doi.org/10.1016/j.ijpsycho.2013.07.005