DOI QR코드

DOI QR Code

제주도 암석권의 성분과 진화(I): 리뷰

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review

  • 양경희 (부산대학교 지구환경시스템학부)
  • Yang, Kyounghee (Department of Geological Sciences, Pusan National University)
  • 투고 : 2016.08.10
  • 심사 : 2016.09.19
  • 발행 : 2016.09.30

초록

제주도 현무암에 포획된 맨틀 페리도타이트에 대한 암석학적/지화학적 연구는 한반도 상부맨틀 암석권 진화에 대한 우리의 지식을 한층 높이고 있다. 제주도의 페리도타이트 포획암은 대부분 첨정석 레졸라이트이며, 그 외 하즈버가이트와 휘석암으로 이루어져 있다. 제주도 페리도타이트 포획암은 부분용융, 재결정변형작용, 교대작용을 경험한 후 맨틀에 남아있던 잔류맨틀물질임을 나타낸다. 이 포획암은 맨틀웨지 환경에 있었던 암석으로 분별부분용융에 의해 일차적으로 결핍과정을 겪었으며, 소규모의 전단대내 특정한 편압에서 소량의 반상쇄성-압쇄조직이 형성되는 재결정작용도 경험했다. 그 이후 페리도타이트는 섭입하는 슬랩 기원의 $SiO_2$, K, $H_2O$, LREE에 포화된 유체(혹은 용융체)에 의해 다양하게 교대/부화되었다. 슬랩 기원의 이 유체는감람석과 반응하여 사방휘석과 금운모를 이차적으로 형성하였다. 교대작용은 제4기 제주도 마그마 시스템보다 충분히 앞선 사건이었으며, 모마그마와는 성인적으로 관련이 없다. 이러한 교대작용에도 불구하고 제주도 상부맨틀 암석권은 비교적 높은 온도와 교대작용 이후에 주어진 충분한 시간에 의해 지화학적으로 완전한 평형상태에 도달하였다. 그 이후에 동해가 열리고 동아시아 암석권은 확장되어지면서 원시 제주암석권도 맨틀웨지 환경에서 판내부환경으로 변환되어진다. 제4기 판내부환경에서 제주도가 형성되면서 이때 상승하는 알칼리 현무암에 포획된 맨틀 페리도타이트가 지표면에 운반되어졌다. 제주 상부맨틀 암석권에서 일어난 이런 종류의 물질순환은 대륙지각하부 암석권맨틀의 진화에 상당히 중요한 역할을 했었을 것이며, 동아시아 아래 상부맨틀 암석권에 EM I, EM II와 같은 부화된 영역을 형성하는데 기여했을 수도 있다.

Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.

키워드

참고문헌

  1. Arai, S., 1994, Characterization of spinel peridotites by olivine- spinel compositional relationships: review and interpretation. Chemical Geology, 113, 191-204. https://doi.org/10.1016/0009-2541(94)90066-3
  2. Arai, S. and Ishimaru, S., 2008, Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. Journal of Petrology, 49, 665-695.
  3. Arai, S., Ishimaru, S., and Okrugin, V.M., 2003, Metasomatized harzburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: an implication for the metasomatic agent. The Island Arc, 12, 233-246. https://doi.org/10.1046/j.1440-1738.2003.00392.x
  4. Arai, S., Shimizu, Y., Morishita, T., and Ishida, Y., 2006, A new type of orthopyroxenite xenolith from Takashima, Southwest Japan: silica enrichment of the mantle by evolved alkali basalt. Contributions to Mineralogy and Petrology, 152, 387-398. https://doi.org/10.1007/s00410-006-0117-0
  5. Brey, G.P. and Kohler, T.P., 1990, Geothermobarometry in four phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
  6. Bedini, R.M., Bodinier, J.-L., Dautria, J.-M., and Morten, L., 1997, Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth and Planetary Science Letters, 153, 67-83. https://doi.org/10.1016/S0012-821X(97)00167-2
  7. Choi, S.H., Lee, J.I., Park, C.H., and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  8. Choi, S.H., Kwon S.T., Mukasa, S.B., and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chemical Geology, 221, 40-64. https://doi.org/10.1016/j.chemgeo.2005.04.008
  9. Dantas, C., Gregoire, M., Koester, E., Conseicao, R.V., and Rieck, Jr. N., 2009, The lherzolite-websterite xenolith suite from Northern Patagonia (Argentina): Evidence of mantle-melt reaction processes. Lithos, 107, 107-120. https://doi.org/10.1016/j.lithos.2008.06.012
  10. Dewey, J.F. and Lamb, S.H., 1992, Active tectonics of the Andes. Tectonophysics, 205, 79-95. https://doi.org/10.1016/0040-1951(92)90419-7
  11. Downes, H., Embey-Isztin, A., and Thirlwall, M.F., 1992, Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary)-evidence for an association between enrichment and texture in the upper mantle. Contributions to Mineralogy and Petrology, 109, 340-354. https://doi.org/10.1007/BF00283323
  12. Downes, H., Macdonald, R., Upton, B.G.J., Cox, K.G., Bodinier, J.-L., Mason, P.R.D., James, D., Hill, P.G., and Hearn, B.C., Jr, 2004, Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. Journal of Petrology, 45, 1631-1662. https://doi.org/10.1093/petrology/egh027
  13. Falus, G., Tommasi, A., Ingrin, J., and Szabo, C., 2008, Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths. Earth and Planetary Science Letters, 272, 50-64. https://doi.org/10.1016/j.epsl.2008.04.035
  14. Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters, 38, 129-176. https://doi.org/10.1016/0012-821X(78)90130-9
  15. Ganguly, J. and Tazzoli, V., 1994, $Fe^{2+}$-Mg interdiffusion in orthopyrxene: retrieval from the data on intracrystalline exchange reaction. American Mineralogist, 79, 930-937.
  16. Gao, S., Rudnick, R.L., Carlson, R.W., McDonough, W.F., and Liu, Y.-S., 2002, Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters, 198, 307-322. https://doi.org/10.1016/S0012-821X(02)00489-2
  17. Gregoire, M., McInnes, B.I.A., and O'Reilly. S.Y., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part 2. Trace element characteristics of slab-derived fluids. Lithos, 59, 91-108. https://doi.org/10.1016/S0024-4937(01)00058-5
  18. Gregoire, M., Chevet, J., and Maaloe, S., 2010, Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Geological Society, London, Special Publications, 337, 71-86. https://doi.org/10.1144/SP337.4
  19. Hamdy, A.M., Park, P.H., Lim, H.C., and Park, K.D., 2004, Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations. Earth Planets Space, 56, 927-931. https://doi.org/10.1186/BF03352540
  20. Hoang, N., Flower, M., and Carlson, R.W., 1996, Major, trace, and isotopic compositions of Vietnamese basalts: interaction of hydrous EM1-rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60, 4329-4351. https://doi.org/10.1016/S0016-7037(96)00247-5
  21. Heo, S., Yang, K., and Jeong, H., 2012, Hydrous Minerals (Phlogopite and Amphibole) from Basaltic Rocks, Jeju Island: Evidences for Modal Metasomatism. Journal of Petrological Society of Korea, 21, 13-30 (Korean with English abstract). https://doi.org/10.7854/JPSK.2012.21.1.013
  22. Ionov, D.A. and Hofmann, A.W., 1995, Nb, Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations. Earth and Planetary Science Letters, 131, 341-356. https://doi.org/10.1016/0012-821X(95)00037-D
  23. Kelemen, P.B., Hart, S.R., and Bernstein, S., 1998, Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164, 387-406. https://doi.org/10.1016/S0012-821X(98)00233-7
  24. Keppler, H., 1996, Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380, 237-240. https://doi.org/10.1038/380237a0
  25. Kil, Y.W., Shin, H.J., Yun, S.H., Koh, J.S., and Ahn, U.S., 2008, Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island. Journal of mineralogical Society of Korea, 21, 373-382 (Korean with English abstract).
  26. Kil, Y.W. and Wendlandt, R.F., 2004, Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contributions to Mineralogy and Petrology, 148, 265-280. https://doi.org/10.1007/s00410-004-0608-9
  27. Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T., and Park, E.J., 2003, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 36, 421-441.
  28. Koh, K., Park, J.B., Kang, B.-R., Kim, G.-P., and Moon, D.C., 2013, Volcanism in Jeju Island. Journal of Geological Society of Korea, 49, 209-230 (Korean with English abstract).
  29. Koh, K., Park, Y., and Park, O., 2004, The underground geology and $^{40}Ar-^{39}Ar$ dating from the eastern part of Jeju Island. Spring Geological Field Trip. Journal of Geological Society of Korea, 29-50(Korean with English abstract)
  30. Kohler, T.P. and Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54, 2375-2388. https://doi.org/10.1016/0016-7037(90)90226-B
  31. Kubo, A. and Fukuyama, E., 2003, Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth and Planetary Science Letters, 210, 305-316. https://doi.org/10.1016/S0012-821X(03)00132-8
  32. Lasaga, A.C., 1998, Kinetic theory in the earth sciences. Princeton University Press, 728p.
  33. Lee, M.W., 1982, Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section Series, 15, 177-256.
  34. Lee, S.M., Kim, S.W., and Jin, M.S., 1987, Igneous activities of the Cretaceous to the early Tertiary and their tectonic implication in South Korea. Journal of Geological Society of Korea, 28, 338-359 (Korean with English abstract).
  35. Manning, C.E., 2004, Chemistry of subduction-zone fluids. Earth and Planetary Science Letters, 223, 1-16. https://doi.org/10.1016/j.epsl.2004.04.030
  36. McCulloch, M.T. and Gamble, J.A., 1991, Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102, 358-374. https://doi.org/10.1016/0012-821X(91)90029-H
  37. McDonough, W.F. and Sun, S.S., 1995, The composition of the Earth. Chemical Geology, 120, 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  38. McInnes, B.I.A., Gregoire, M., Binns, R.A., Herzig, P.M., and Hannington, M.D., 2001, Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: Petrology and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth and Planetary Science Letters, 188, 169-183. https://doi.org/10.1016/S0012-821X(01)00306-5
  39. Mercier, J.C.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487. https://doi.org/10.1093/petrology/16.1.454
  40. Otofuji, Y., Mastuda, T., and Nohda, S., 1985, Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japanç rifting process of the Japan Sea. Earth and Planetary Science Letters, 72, 265-277.
  41. Park, J.B., Park, K.H., Cho, D.L., and Koh, G.W., 1999, Petrochemical classification of the Quaternary volcanic rocks in Cheju Island, Korea. Journal of Geological Society of Korea, 35, 253-264 (Korean with English abstract).
  42. Passchier, C. and Trouw, R., 1996, Micro-Tectonics. Springer-Verlag, Berlin, 289p.
  43. Park, G-H., 2004, Jeju formation history. Spring Geological Field Trip. Journal of Geological Society of Korea 1(Korean with English abstract).
  44. Ramos, V.A., 1999, Plate tectonic setting of the Andean Cordillera. Epiodes, 22, 183-190.
  45. Rampone, E., Bottazzi, P., and Ottolini, L., 1991, Complementary Ti and Zr anomalies in orthopyroxene and clinopyroxene from mantle peridotites. Nature, 354, 518-520. https://doi.org/10.1038/354518a0
  46. Sager, W.W., Handschumacher, D.W., Hilde, T.W.C., Bracey, D.R., 1988. Tectonic evolution of the northern Pacific plate and Pacific-Farallon-Izanagi triple junction in the late Jurassic and early Cretaceous. Tectonophysics, 155, 345-364. https://doi.org/10.1016/0040-1951(88)90274-0
  47. Sibuet, J.C., Letouzey, J., Barbier, F., Charvet, J., Foucher, J.P., Hilde, T.W.C., Kimura, M., Chiao, L.Y., Marsset, B., Muller, C., and Stephan, J.F., 1987, Back arc extension in the Okinawa Trough. Journal of Geophysical Research-Solid Earth and Planets, 92, 14041. https://doi.org/10.1029/JB092iB13p14041
  48. Simon, N.S.C., Neumann, E.R., Bonadiman, C., Coltorti, M., Delpech, G., Gregoire, M., and Widom, E., 2008, Ultra-depleted domains in the oceanic mantle lithosphere: evidence from major element and modal relationships in mantle xenoliths from ocean islands. Journal of Petrology, 49, 1223-1251. https://doi.org/10.1093/petrology/egn023
  49. Smith, D., 2000, Insights into the evolution of the uppermost continental mantle from xenolith localities on and near the Colorado Plateau and regional comparisons. Journal of Geophysics Research, 105, 6769-16781.
  50. Smith, D., Riter, J.C.A., and Mertzman, S.A., 1999, Erratum to "water-rock interactions, orthopyroxene growth and Sienrichment in the mantle: evidence in xenoliths from the Colorado Plateau, southwestern United States". Earth and Planetary Science Letters, 167, 347-356. https://doi.org/10.1016/S0012-821X(99)00027-8
  51. Steinberger, B. and Gaina, C., 2007, Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea. Geology, 35, 407-410. https://doi.org/10.1130/G23383A.1
  52. Streckeisen, A., 1976, To each plutonic rock its proper name. Earth Science Reviews, 12, 1-33. https://doi.org/10.1016/0012-8252(76)90052-0
  53. Sun, S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42, 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  54. Szabo, C., Falus, G., Zajacz, Z., Kovacs, I., and Bali, E., 2004, Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review. Tectonophysics, 393, 119-137. https://doi.org/10.1016/j.tecto.2004.07.031
  55. Tatsumi, Y., Shukuno, H., Yoshikawa, M., Chang, Q., Sato, K., and Lee, M.W., 2005, The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. Journal of Petrology, 46, 523-553.
  56. Toramaru, A. and Fujii, N., 1986, Connectivity of melt phase in a partially molten peridotite. Journal of Geophysical Research-Solid Earth and Planets, 91, 9239-9252. https://doi.org/10.1029/JB091iB09p09239
  57. Vauchez, A. and Garrido, C.J., 2001, Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth and Planetary Science Letters, 192, 235-249. https://doi.org/10.1016/S0012-821X(01)00448-4
  58. Webb, S.A.C. and Wood, B.J., 1986, Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contributions to Mineralogy and Petrology, 92, 471-480. https://doi.org/10.1007/BF00374429
  59. Woo, Y., Yang, K., Kil, Y., Yun, S., and Arai, S., 2014, Silica- and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? Lithos, 208-209 (2014) 312-323. https://doi.org/10.1016/j.lithos.2014.09.003
  60. Xu, X., O'Reilly, S.Y., Griffin, W.L., and Zhou, X., 2000, Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. Journal of Petrology, 41, 111-148. https://doi.org/10.1093/petrology/41.1.111
  61. Xu, Y.-G., 2001, Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean craton in China: evidence, timing and mechanism. Physics and Chemistry of the Earth (A), 26, 747-757.
  62. Yang, K., Hidas, K., Falus, G., Szabo, C., Nam, B., Kovacs, I., and Hwang, H., 2010, Relation between mantle shear zone deformation and metasomatism in spinel peridotite xenoliths of Jeju Island (South Korea): evidence from olivine CPO and trace elements. Journal of Geodynamics, 50, 424-440. https://doi.org/10.1016/j.jog.2010.05.005
  63. Yang, K., Arai, S., Yu, J., Yun, S.H., Kim, J.S., and Hwang, J.Y., 2012a, Gabbroic xenoliths and megacrysts in the Pleisto-Holocene alkali basalts from Jeju Island, South Korea: The implications for metasomatism of the lower continental crust. Lithos, 142-143, 201-215. https://doi.org/10.1016/j.lithos.2012.03.006
  64. Yang, K., Szabo, C., Arai, S., Yu, J., and Jeong, H., 2012b, Silica enrichment on Group II xenoliths by evolved alkali basalt from Jeju Island, South Korea: implication for modification of intraplate deep-seated rocks. Mineralogy and Petrology, 106, 107-130. https://doi.org/10.1007/s00710-012-0222-x
  65. Yu, J., Yang, K., and Kim. J., 2010, Textural and Geochemical Characteristics and their Relation of Spinel Peridotite Xenoliths from Jeju Island. Journal of Petrological Society of Korea, 19, 227-244.
  66. Yu, J., Yang, K., Jeong, H., and Kil, Y. 2012, Petrology of pyroxenite xenoliths enclosed in basaltic rocks from Shinsanri of Jeju Island. Journal of the Geological Society of Korea, 48, 299-312.
  67. Zindler, A., and Hart, S., 1986, Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  68. Zou, H., Zindler, A., Xu, X., and Qi, Q., 2000, Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology, 171, 33-47. https://doi.org/10.1016/S0009-2541(00)00243-6

피인용 문헌

  1. Editorial : Neotectonic and Magma Evolution in the Korean Peninsula and Its Vicinity vol.25, pp.3, 2016, https://doi.org/10.7854/JPSK.2016.25.3.165