References
- M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature, 204, 1050-1052 (1964). https://doi.org/10.1038/2041050a0
- D. M. Roy and S. K. Linnehan, Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange, Nature, 247, 220-222 (1974). https://doi.org/10.1038/247220a0
- H. Chen, B. H. Clarkson, K. Sun, and J. F. Mansfield, Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure, J. Colloid Interface Sci., 288, 97-103 (2005). https://doi.org/10.1016/j.jcis.2005.02.064
- W. Suchanek and M. Yoshimura, Processing and properties of hydroxyapatite- based biomaterials for use as hard tissue replacement implants, J. Mater. Res., 13, 94-117 (1998). https://doi.org/10.1557/JMR.1998.0015
- G. Wei and P. X. Ma, Structure and properties of nano-hydroxyapatite/ polymer composite scaffolds for bone tissue engineering, Biomaterials, 25, 4749-4757 (2004). https://doi.org/10.1016/j.biomaterials.2003.12.005
- S. S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, and B. S. Kim, Poly(Lactide-Co-Glycolide)/Hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials, 27, 1399-1409 (2006). https://doi.org/10.1016/j.biomaterials.2005.08.016
- K. Y. Kwon, E. Wang, N. Chang, and S. W. Lee, Characterization of the dominant molecular step orientations on hydroxyapatite (100) surfaces, Langmuir, 25, 7205-7208 (2009). https://doi.org/10.1021/la900824n
- A. C. Tas, Molten salt synthesis of calcium hydroxyapatite whiskers, J. Am. Ceram. Soc., 84, 295-300 (2001).
- T. S. P. Cellet, G. M. Pereira, E. C. Muniz, R. Silva, and A. F. Rubira, Hydroxyapatite nanowhiskers embedded in chondroitin sulfate microspheres as colon targeted drug delivery systems, J. Mater. Chem. B, 3, 6837-6846 (2015). https://doi.org/10.1039/C5TB00856E
- N. S. Sambudi, S. Cho, and K. Cho, Porous hollow hydroxyapatite microspheres synthesized by spray pyrolysis using a microalga template: Preparation, drug delivery, and bioactivity, RSC Adv., 6, 43041-43048 (2016). https://doi.org/10.1039/C6RA03147A
- K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-bound cationic ruthenium complexes as novel heterogeneous lewis acid catalysts for diels-alder and aldol reactions, J. Am. Chem. Soc., 125, 11460-11461 (2003). https://doi.org/10.1021/ja0302533
- W. E. Brown, Octacalcium phosphate and hydroxyapatite: Crystal structure of octacalcium phosphate, Nature, 196, 1048-1050 (1962).
- S. Graham and P. W. Brown, Reactions of octacalcium phosphate to form hydroxyapatite, J. Cryst. Growth, 165, 106-115 (1996). https://doi.org/10.1016/0022-0248(95)00994-9
- Y. Kim, D. Kim, S. Lee, D. K. Woo, J. H. Byun, and K. Y. Kwon, Synthesis and morphological characterization of calcium phosphates prepared under different naoh concentrations, Bull. Korean Chem. Soc., 35, 2241-2242 (2014). https://doi.org/10.5012/bkcs.2014.35.8.2241
- M. Tomozawa and S. Hiromoto, Microstructure of hydroxyapatiteand octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values, Acta Mater., 59, 355-363 (2011). https://doi.org/10.1016/j.actamat.2010.09.041
- J. K. Lee and H. I. Aaronson, The equilibrium shape of a particle at macroscopic steps and kinks and the gibbs-wulff construction, Surf. Sci., 47, 692-696 (1975). https://doi.org/10.1016/0039-6028(75)90217-4