DOI QR코드

DOI QR Code

용이한 마이크로웨이브 조사법을 사용하여 합성한 이원계 Cu (I) 셀렌 그래핀 나노복합체의 광촉매 염료분해 효과

Photocatalytic Dye Decomposition Effect of Binary Copper (I) Selenide-graphene Nanocomposites Synthesized with Facile Microwave-assisted Technique

  • Ali, Asghar (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • 투고 : 2016.07.07
  • 심사 : 2016.08.05
  • 발행 : 2016.10.10

초록

본 연구에서 쉽고 빠른 마이크로 조사법을 사용하여 합성한 $Cu_2Se$-그래핀 나노복합체를 광촉매 분해 효과를 연구하였다. 제조된 나노복합체는 XRD, SEM, TEM, 라만분광분석, XPS 및 UV-Vis 흡수분광법을 사용하여 특성화하였다. 그리고 광촉매 분해특성을 가시광선 조사하에 표준염료인 로다민 B의 분해를 통하여 연구하였다. $Cu_2Se$-그래핀 복합체는 상당히 우수한 광촉매 분해 효과를 나타내었고, 이는 180 min 동안 가시광선 조사하에서 약 95%의 분해 효과를 나타내고 있음을 이들 결과로부터 알 수 있었다. 결론적으로 $Cu_2Se$-그래핀 복합체는 염료 오염물질에 대한 적합한 촉매로 사용할 수 있음을 확인하였다.

Here, we examined the photo-degradation efficiency of $Cu_2Se$-graphene nanocomposites synthesized by a facile and fast microwave-assisted technique. The prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, XPS and UV-Vis spectrophotometry. The photocatalytic performance was studied through the decomposition of Rhodamine (Rh B) as a standard dye under visible light radiation. A 95% of Rh B degradation after visible light irradiation for 180 min indicates that the $Cu_2Se$-graphene composite exhibited significant photodegradation efficiency. Therefore, it can be concluded that the synthesized $Cu_2Se$-graphene can be used as a suitable catalyst for decomposing dye pollutants.

키워드

참고문헌

  1. H. Kyung, J. Lee, and W. Choi, Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous $TiO_2$ suspensions under visible-light illumination, Environ. Sci. Technol., 39(7), 2376-2382 (2005). https://doi.org/10.1021/es0492788
  2. R. Vinu and G. Madras, Photocatalytic activity of Ag-substituted and impregnated nano-$TiO_2$, Appl. Catal. A, 366(1), 130-140 (2009). https://doi.org/10.1016/j.apcata.2009.06.048
  3. A. R. Ghadim, S. Aber, A. Olad, and H. ASorkhabi, Optimization of electrocoagulation process for removal of an azo dye using response surface methodology and investigation on the occurrence of destructive side reactions, Chem. Eng. Process., 64, 68-78 (2013). https://doi.org/10.1016/j.cep.2012.10.012
  4. M. Anas, D. S. Han, K. Mahmoud, H. Park, and A. A. Wahab, Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition, Mater. Sci. Semicond. Process., 41, 209-218 (2016). https://doi.org/10.1016/j.mssp.2015.08.041
  5. H. P. Carvalho, J. Huang, M. Zhao, G. Liu, L. Dong, and X. Liu, Improvement of Methylene Blue removal by electrocoagulation/ banana peel adsorption coupling in a batch system, Alex. Eng. J., 54(3), 777-786 (2015). https://doi.org/10.1016/j.aej.2015.04.003
  6. G. G. Bessegato, J. C. Cardoso, B. F. da Silva, and M. V. Boldrin Zanoni, Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in Acid Yellow 1 mineralization, Appl. Catal. B, 180, 161-168 (2016). https://doi.org/10.1016/j.apcatb.2015.06.013
  7. B. M. Esteves, C. D Rodrigues, R. Boaventura, F. M. Hodar, and L. M. Madeira, Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor, J. Environ. Manag., 166, 193-203 (2016). https://doi.org/10.1016/j.jenvman.2015.10.008
  8. K. Shakir, A. F. Elkafrawy, H. F. Ghoneimy, S. G. Beheir, and M. Refaat, Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation, Water Res., 44(5), 1449-1461 (2010). https://doi.org/10.1016/j.watres.2009.10.029
  9. Z. D. Meng and W. C. Oh, Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/$TiO_2$ composite with different ultrasonic intensity, Ultrason. Sonochem., 18(3), 757-764 (2011). https://doi.org/10.1016/j.ultsonch.2010.10.008
  10. M. Sun, Y. Fang, Y. Wang, S. Sun, J. He, and Z. Yan, Synthesis of $Cu_2O$/graphene/rutile $TiO_2$ nanorod ternary composites with enhanced photocatalytic activity, J. Alloys Compd., 650, 520-527 (2015). https://doi.org/10.1016/j.jallcom.2015.08.002
  11. Y. Leng, Y. Gao, W. Wang, and Y. Zhao, Continuous supercritical solvothermal synthesis of $TiO_2$-pristine-graphene hybrid as the enhanced photocatalyst, J. Supercrit. Fluids, 103, 115-121 (2015). https://doi.org/10.1016/j.supflu.2015.05.001
  12. M. A Rauf and S. S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J., 151(1), 10-18 (2009). https://doi.org/10.1016/j.cej.2009.02.026
  13. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, and M. Shanthi, Synthesis, characterization and catalytic activity of co-doped Ag-Au-ZnO for MB dye degradation under UV-A light, Mater. Sci. Semicond. Process., 22, 83-91 (2014). https://doi.org/10.1016/j.mssp.2014.02.011
  14. S. Rtimi, C. Pulgarin, R. Sanjines, and J. Kiwi, Kinetics and mechanism for transparent polyethylene-$TiO_2$ films mediated self-cleaning leading to MB dye discoloration under sunlight irradiation, Appl. Catal. B, 162, 236-244 (2015). https://doi.org/10.1016/j.apcatb.2014.05.039
  15. N. D. Phu, L. H. Hoang, X. Chen, M. Hong Kong, H. C. Wen, and W. C. Chou, Study of photocatalytic activities of $Bi_2WO_6$ nanoparticles synthesized by fast microwave-assisted method, J. Alloys Compd., 647, 123-128 (2015). https://doi.org/10.1016/j.jallcom.2015.06.047
  16. J. Zhang, L. J. Xu, Z. Q. Zhu, and Q. J. Liu, Synthesis and properties of (Yb, N)-$TiO_2$ photocatalyst for degradation of methylene blue (MB) under visible light irradiation, Mater. Res. Bull., 70, 358-364 (2015). https://doi.org/10.1016/j.materresbull.2015.04.060
  17. Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X. J. Zhang, and Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere, 144, 1530-1535 (2016). https://doi.org/10.1016/j.chemosphere.2015.10.040
  18. Y. Cao, X. Gu, H. Yu, W. Zeng, Xi. Liu, S. Jiang, and Y. Li, Degradation of organic dyes by $Si/SiO_x$ core-shell nanowires: Spontaneous generation of superoxides without light irradiation, Chemosphere, 144, 836-841 (2016). https://doi.org/10.1016/j.chemosphere.2015.09.067
  19. D. Das and R. K. Dutta, A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation, J. Colloid Interface Sci., 457, 339-344 (2015). https://doi.org/10.1016/j.jcis.2015.07.002
  20. N. K. R. Bogireddy, H. A. K. Kumar, and B. K. Mandal, Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes, J. Environ. Chem. Eng., 4(1), 56-64 (2016). https://doi.org/10.1016/j.jece.2015.11.004
  21. K. Mahesh and D. H. Kuo, Synthesis of Ni nanoparticles decorated $SiO_2/TiO_2$ magnetic spheres for enhanced photocatalytic activity towards the degradation of azo dye, Appl. Surf. Sci., 357, 433-438 (2015). https://doi.org/10.1016/j.apsusc.2015.08.264
  22. A. Jagminas, R. Juskenas, I. Gailiute, G. Statkute, and R. Tomasiunas, Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores, J. Cryst. Growth, 294(2), 343-348 (2006). https://doi.org/10.1016/j.jcrysgro.2006.06.013
  23. T. D. T. Ung and Q. L. Nguyen, Synthesis, structural and photocatalytic characteristics of $nano-Cu_{2-x}Se$, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2(4), 045003 (2011). https://doi.org/10.1088/2043-6262/2/4/045003
  24. M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev., 110(1), 132-145 (2009). https://doi.org/10.1021/cr900070d
  25. A. Konstantin Geim, Graphene: status and prospects, Science, 324(5934), 1530-1534 (2009). https://doi.org/10.1126/science.1158877
  26. Y.-K. Seo, G. Hundal, I. T. Jang, Y. K. Hwang, C.-H. Jun, and J.-S. Chang, Microwave synthesis of hybrid inorganic-organic materials including porous $Cu_3(BTC)_2$ from Cu(II)-trimesate mixture Microporous, Mesoporous Mater., 119, 331-337 (2009). https://doi.org/10.1016/j.micromeso.2008.10.035
  27. K. M. L. Taylor-Pashow, J. D. Rocca, Z. Xie, S. Tran, and W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal- organic frameworks for imaging and drug delivery, J. Am. Chem. Soc., 131, 14261-14263 (2009). https://doi.org/10.1021/ja906198y
  28. N. A. Khan and S. H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction, Coord. Chem. Rev., 285, 11-23 (2015). https://doi.org/10.1016/j.ccr.2014.10.008
  29. J. S. Choi, W. J. Son, J. Kim, and W.-S. Ahn, Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered, Microporous Mesoporous Mater., 116, 727-731 (2008). https://doi.org/10.1016/j.micromeso.2008.04.033
  30. W. L. Liu, L. H. Ye, X. F. Liu, L. M. Yuan, X. L. Lu, and J. X. Jiang, Rapid synthesis of a novel cadmium imidazole-4, 5-dicarboxylate metal-organic framework under microwave-assisted solvothermal condition, Inorg. Chem. Commun, 11, 1250-1252 (2008). https://doi.org/10.1016/j.inoche.2008.07.020
  31. I. Bilecka and M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis, Nanoscale, 2, 1358-1374 (2010). https://doi.org/10.1039/b9nr00377k
  32. K. J. Rao, B. Vaidhyanathan, M. Ganguli, and P. A. Ramakrishnan, Synthesis of inorganic solids using microwaves, Chem. Mater., 11(4), 882-895 (1999). https://doi.org/10.1021/cm9803859
  33. M. Rajamathi and R. Seshadri, Curr. Opin, Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions, Solid State Mater. Sci., 6, 337-345 (2002). https://doi.org/10.1016/S1359-0286(02)00029-3
  34. S. Komarneni, Nanophase materials by hydrothermal, microwave- hydrothermal and microwave-solvothermal methods, Curr. Sci., 85(12), 1730-1734 (2003).
  35. S. Z. Shi and J.-Y. Hwang, Microwave-assisted wet chemical synthesis: Advantages, significance, and steps to industrialization, J. Miner. Mater. Charact. Eng., 2, 101-110 (2003).
  36. K. Ullah, A. Ali, S. Ye, L. Zhu, and W. C. Oh, Microwave- assisted synthesis of Pt-graphene/$TiO_2$ nanocomposites and their efficiency in assisting hydrogen evolution from water in the presence of sacrificial agents, Sci. Adv. Mater., 7(4), 606-614 (2015). https://doi.org/10.1166/sam.2015.2135
  37. W. C. Oh and F. J. Zhang, Preparation and characterization of graphene oxide reduced from a mild chemical method, Asian J. Chem., 23(2), 875-879 (2011).
  38. M. L. Chen, C. Y. Park, J. G. Choi, and W. C. Oh, Synthesis of characterization of metal (Pt, Pd and Fe)-graphene composites, J. Korean. Ceram. Soc., 48(2), 147-151 (2011). https://doi.org/10.4191/KCERS.2011.48.2.147
  39. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G .Jeffrey Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater., 11(5), 422-425 (2012). https://doi.org/10.1038/nmat3273
  40. V. M. Glazov, A. S. Pashinkin, and V. A. Fedorov, Phase equilibria in the Cu-Se system, Inorg. Mater., 36(7), 641-652 (2000). https://doi.org/10.1007/BF02758413
  41. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr, Hydrothermal synthesis of graphene-$TiO_2$ nanotube composites with enhanced photocatalytic activity, ACS Catal., 2(6), 949-956 (2012). https://doi.org/10.1021/cs200621c
  42. B. Pejova, Optical phonons in nanostructured thin films composed by zincblende zinc selenide quantum dots in strong size-quantization regime: Competition between phonon confinement and strain-related effects, J. Solid State Chem., 213, 22-31 (2014). https://doi.org/10.1016/j.jssc.2014.01.034
  43. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep., 473(5), 51-87 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
  44. Q. Xiang, J. Yu, and M. Jaroniec, Synergetic effect of $MoS_2$ and graphene as cocatalysts for enhanced photocatalytic $H_2$ production activity of $TiO_2$ nanoparticles, J. Am. Chem. Soc., 134(15), 6575-6578 (2012). https://doi.org/10.1021/ja302846n
  45. B. Tang, H. Guoxin, and H. Gao, Raman spectroscopic characterization of graphene, Appl. Spectrosc. Rev., 45(5), 369-407 (2010). https://doi.org/10.1080/05704928.2010.483886
  46. T. Ghosh, K. Ullah, V. Nikam, C. Y. Park, Z. D. Meng, and W. C. Oh, The characteristic study and sonocatalytic performance of CdSe-graphene as catalyst in the degradation of azo dyes in aqueous solution under dark conditions, Ultrason. Sonochem., 20(2), 768-776 (2013). https://doi.org/10.1016/j.ultsonch.2012.09.005
  47. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'Homme, I. A. Aksay, and R. Car, Raman spectra of graphite oxide and functionalized graphene sheets, Nano Lett., 8(1), 36-41 (2008). https://doi.org/10.1021/nl071822y
  48. S. C. Riha, D. C. Johnson, and A. L. Prieto, $Cu_2Se$ nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction, J. Am. Chem. Soc., 133(5), 1383-1390 (2010). https://doi.org/10.1021/ja106254h
  49. W. Fan, Q. Zhang, and Y. Wang Semiconductor-based nanocomposites for photocatalytic $H_2$ production and $CO_2$ conversion, Phys. Chem. Chem. Phys., 15, 2632-2649 (2013). https://doi.org/10.1039/c2cp43524a
  50. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. I, Petridis, and I. Dekany, Evolution of surface functional groups in a series of progressively oxidized graphite oxides, Chem. Mater., 18, 2740-2749 (2006). https://doi.org/10.1021/cm060258+
  51. H. K. Jeong, H. J. Noh, J. Y, Kim, M. H. Jin, C. Y. Park, and Y. H. Lee, X-ray absorption spectroscopy of graphite oxide, Europhys. Lett., 82, 67004-67005 (2008). https://doi.org/10.1209/0295-5075/82/67004
  52. X. Chen, S. Shen, L. Guo, and S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chem. Rev., 210, 6503-6570 (2010).
  53. D. Cahen, P. J. Ireland, L. L. Kazmerski, and F. A. Thiel, X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of $CuInSe_2$ photoelectrodes, J. Appl. Phys., 5, 4761-4771 (1985).
  54. J. Kyriakopoulos, M. D. Tzirakis, G. D. Panagiotou, M. N. Alberti, K. S. Triantafyllidis, S. Giannakaki, K. Bourikas, C. Kordulis, M. Orfanopoulos, and A. Lycourghiotis, Highly active catalysts for the photooxidation of organic compounds by deposition of [60] fullerene onto the MCM-41 surface: A green approach for the synthesis of fine chemicals, Appl. Chem. B, 117, 36-48 (2012).
  55. Y. Wang, R. Shi, J. Lin, and Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like $C_3N_4$, Energy Environ. Sci., 4(8), 2922-2929 (2011). https://doi.org/10.1039/c0ee00825g