DOI QR코드

DOI QR Code

Characteristics of Aerosol Mass Concentration and Chemical Composition of the Yellow and South Sea around the Korean Peninsula Using a Gisang 1 Research Vessel

기상1호에서 관측된 한반도 서해 및 남해상의 에어로졸 질량농도와 화학조성 특성

  • Cha, Joo Wan (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Ko, Hee-Jung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Shin, Beomchel (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Lee, Hae-Jung (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Jeong Eun (Environmental Meteorology Research Division, National Institute of Meteorological Sciences) ;
  • Ahn, Boyoung (High Impact Weather Research Center, National Institute of Meteorological Sciences) ;
  • Ryoo, Sang-Boom (Environmental Meteorology Research Division, National Institute of Meteorological Sciences)
  • 차주완 (국립기상과학원 환경기상연구과) ;
  • 고희정 (국립기상과학원 환경기상연구과) ;
  • 신범철 (국립기상과학원 환경기상연구과) ;
  • 이혜정 (국립기상과학원 환경기상연구과) ;
  • 김정은 (국립기상과학원 환경기상연구과) ;
  • 안보영 (국립기상과학원 재해기상연구센터) ;
  • 류상범 (국립기상과학원 환경기상연구과)
  • Received : 2016.03.24
  • Accepted : 2016.07.27
  • Published : 2016.09.30

Abstract

Northeast Asian regions have recently become the main source of anthropogenic and natural aerosols. Measurement of aerosols on the sea in these regions have been rarely conducted since the experimental campaigns such as ACE-ASIA (Asian Pacific Regional Aerosol Characterization Experiment) in 2001. Research vessel observations of aerosol mass and chemical composition were performed on the Yellow and south sea around the Korean peninsula. The ship measurements showed six representative cases such as aerosol event and non-event cases during the study periods. On non-event cases, the anthropogenic chemical and natural soil composition on the Yellow sea were greater than those on the south sea. On aerosol event cases such as haze, haze with dust, and dust, the measured mass concentrations of anthropogenic chemical and element compositions were clearly changed by the events. In particular, methanesulfonate ($MSA^-$, $CH_3SO_3^-$), a main component of natural oceanic aerosol important for sulfur circulation on Earth, was first observed by the vessel in Korea, and its concentration on the Yellow sea was three times that on the south sea during the study period. Sea salt concentration important to chemical composition on the sea is related to wind speed. Coefficients of determination ($R^2$) between wind speed and sea salt concentration were 0.68 in $PM_{10}$ and 0.82 in $PM_{2.5}$. Maximum wave height was not found to be correlated to the sea salt concentration. When sea-salt comes into contact with pollutants, the total sea-salt mass is reduced, i.e., a loss of $Cl^-$ concentration from NaCl, the main chemical composing sea salt, is estimated by reaction with $HNO_3$(gas) and $H_2SO_4$(gas). The $Cl^-$ concentration loss by $SO_4^{2-}$ and $NO_3^-$ more easily increased for $PM_{10}$ compared to $PM_{2.5}$. The results of this study will be applied to verifying a dust-haze forecasting model. In addition, continued vessel measurements of aerosol data will become important to research for climate change studies in the future.

Keywords

References

  1. Alexander, B., J. Park, D. J. Jacob, Q. B. Li, R. M. Yantosca, J. Savarino, C. C. W. Lee, and M. H. Thiemens, 2005: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes. J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659.
  2. Arimoto, R., X. Y. Zhang, B. J. Huebert, C. H. Kang, D. L. Savoie, J. M. Prospero, S. K. Sage, C. A. Schloesslin, H. M. Khaing, and S. N. Oh, 2004: Chemical composition of atmospheric aerosols from Zhenbeitai, China, and Gosan, South Korea, during ACE-Asia. J. Geophys. Res., 109, D19S04, doi:10.1029/2003JD004323.
  3. Bates, T. S., and Coauthors, 2004: Marine boundary layer dust and pollutant transport associated with the passage of a frontal system over eastern Asia. J. Geophys. Res., 109, D19S19, doi:10.1029/2003JD004094.
  4. Berner, E. K., and R. A. Berner, 2012: Global Environment: Water, Air, and Geochemical Cycles. Princeton University Press, 488 pp.
  5. Dasgupta, P. K., S. W. Campbell, R. S. Al-Horr, S. M. Rahmat Ullah, L. Jianzhong, C. Amalfitano, and N. D. Poor, 2007: Conversion of sea salt aerosol to $NaNO_3$ and the production of HCl: Analysis of temporal behavior of aerosol chloride/nitrate and gaseous HCl/ $HNO_3$ concentrations with AIM. Atmos. Environ., 4, 4242-4257.
  6. Gao, Y., R. Arimoto, R. A. Duce, L. Q. Chen, M. Y. Zhou, and D. Y. Gu, 1996: Atmospheric non-sea-salt sulfate, nitrate, and methanesulfonate over the China Sea. J. Geophys. Res., 101,12601-12611. https://doi.org/10.1029/96JD00866
  7. Gao, Y., R. Arimoto, R. A. Duce, X. Y. Zhang, G. Y. Zhang, Z. S. An, L. Q. Chen, M. Y. Zhou, and D. Y. Gu, 1997: Temporal and spatial distributions of dust and its deposition to the China Sea. Tellus, 49, 172-189. https://doi.org/10.1034/j.1600-0889.49.issue2.5.x
  8. Grythe, H., J. Strom, R. Krejci, P. Quinn, and A. Stohl, 2014: A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements. Atmos. Chem. Phy., 14, 1277-1297. https://doi.org/10.5194/acp-14-1277-2014
  9. Jaegle, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin, 2011: Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmos. Chem. Phy., 11, 3137-3157. https://doi.org/10.5194/acp-11-3137-2011
  10. Jung, J., H. Furutani, M. Uematsu, and J. Park, 2014: Distributions of atmospheric non-sea-salt sulfate and methanesulfonic acid over the Pacific Ocean between $48^{\circ}N$ and $55^{\circ}S$ during summer. Atmos. Environ., 99, 374-384. https://doi.org/10.1016/j.atmosenv.2014.10.009
  11. Kim, J. H., S. S. Yum, Y.-G. Lee, and B.-C. Choi, 2009: Ship measurements of submicron aerosol size distributions over the Yellow Sea and the East China Sea. Atmos. Res., 93, 700-714. https://doi.org/10.1016/j.atmosres.2009.02.011
  12. Kim, S.-W., S.-C. Yoon, A. Jefferson, J. A. Ogren, E. G. Duttonb, J.-G. Won, Y. S. Ghimc, B.-I. Lee, and J.-S. Han, 2005: Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmos. Environ., 39, 39-50. https://doi.org/10.1016/j.atmosenv.2004.09.056
  13. Kishcha, P., B. Starobinests, R. Udisti, S. Becagli, A. di Sarra, D. Sferlazzo, C. Bommartio, and P. Alpert, 2012: Sea-salt aerosol mass concentration oscillations after rainfall, derived from long-term measurements in lampedusa (central meditierranean). Int. Scholarly Res. Network, 2012, doi:10.5402/2012/679120.
  14. Lee, S.-B., G.-N. Bae, Y. P. Kim, H.-C. Jin, Y.-S. Yoon, and K.-C. Moon, 2002: Aerosol characteristics at Tokchok Island in the Yellow Sea (Korean). J. KOSAE, 18, 305-316.
  15. Li, J., Z. Han, and Z. Xie, 2013: Model analysis of longterm trends of aerosol concentrations and direct radiative forcing over East Asia. Tellus, 65, 20410-20429. https://doi.org/10.3402/tellusb.v65i0.20410
  16. Liu, X., K.-P. Chiang, S.-M. Liu, H. Wei, Y. Zhao, and B.-Q. Huang, 2015: Influence of the Yellow Sea Warm current on phytoplankton community in the central Yellow Sea. Deep-Sea Res. Pt. I, 106, 17-29. https://doi.org/10.1016/j.dsr.2015.09.008
  17. Nakamura, T., K. Matsumoto, and M. Uematsu, 2005: Chemical characteristics of aerosols transported from Asia to the East China Sea: an evaluation of anthropogenic combined nitrogen deposition in autumn. Atmos. Environ., 39, 1749-1758.
  18. National Institute of Meteorological Sciences (NIMS), 2015: Study on improving the ADAM2-HAZE Model (I), Report for Development and application of technology for weather forecast, 101 pp (in Korea).
  19. Oh, M.-S., T.-J. Lee, and D.-S. Kim, 2009: Source identification of ambient size-by-size particulate using the positive matrix factorization model on the border of Yongin and Suwon. J. Korean Soc. Atmos. Environ., 25, 108-121 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2009.25.2.108
  20. Ovadnevaite, J., D. Ceburnis, M. Canagratna, H. Berresheim, J. Bialek, G. Martucci, D. R. Wornop, and C. O'Dowd, 2012: On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res., 17, D1620, doi:10.1029/2011JD017379.
  21. Sciare, J., K. Oikonomou, H. Cachier, N. Mihalopoulos, M. O. Andreae, W. Maenhaut, and R. Sarda-Esteve, 2005: Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign. Atmos. Chem. Phys., 5, 2253-2265. https://doi.org/10.5194/acp-5-2253-2005
  22. Udisti, R., and Coauthors, 2012: Sea spray aerosol in central Antarctica. Present atmospheric behaviour and implications for paleoclimatic reconstructions. Atmos. Environ., 52, 109-120. https://doi.org/10.1016/j.atmosenv.2011.10.018
  23. Yuan, H., W. Ying, and Z. Guoshun, 2004: MSA in Beijing aerosol. Chinese Sci. Bull., 49, 1020-1025. https://doi.org/10.1007/BF03184031
  24. Zhang, H.-H., G.-P. Yang, C.-Y. Liu, and L.-P. Su, 2013: Chemical characteristics of aerosol composition over the Yellow Sea and the East China Sea in autumn. J. Atmos. Sci., 70, 1784-1794. https://doi.org/10.1175/JAS-D-12-0232.1
  25. Zhao, R., B. Han, B. Lu, N. Zhang, L. Zhu, and Z. Bai, 2015: Element composition and source apportionment of atmospheric aerosols over the China Sea. Atmos. Pollut. Res., 6, 191-201. https://doi.org/10.5094/APR.2015.023

Cited by

  1. Water-Soluble Ionic Characteristics of Aerosols in the Marine Boundary Layer over the Yellow Sea during the KORUS-AQ Campaign pp.1976-7951, 2019, https://doi.org/10.1007/s13143-019-00151-8