Acknowledgement
Supported by : Ministry of Science and Technology of the Republic of China
References
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
- Chen, W.Q. and Wang, L.Z. (2002), "Free vibrations of functionally graded piezoelectric hollow spheres with radial polarization", J. Sound Vib., 251(1), 103-114. https://doi.org/10.1006/jsvi.2001.3973
- Chen, W.Q., Ding, H.J. and Liang, J. (2001), "The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property", Int. J. Solids Struct., 38(38-39), 7015-7027. https://doi.org/10.1016/S0020-7683(00)00394-2
- Chen, S.M., Wu, C.P. and Wang, Y.M. (2011), "A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Lova plates", Comput. Mech., 47(4), 425-453. https://doi.org/10.1007/s00466-010-0552-7
- Civalek, O. and Ulker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Struct. Eng. Mech., Int. J., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001
- Dai, H.L., Rao, Y.N. and Dai, T. (2016), "A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000-2015", Compos. Struct., 152, 199-225. https://doi.org/10.1016/j.compstruct.2016.05.042
- Ebrahimi, F., Rastgoo, A. and Atai, A.A. (2009), "A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate", Eur. J. Mech A/Solids, 28(5), 962-973. https://doi.org/10.1016/j.euromechsol.2008.12.008
- Hamzehkolaei, N.S., Malekzadeh, P. and Vaseghi, J. (2011), "Thermal effect on axisymmetric bending of functionally graded circular and annular plates using DQM", Steel Compos. Struct., Int. J., 11(4), 341-358. https://doi.org/10.12989/scs.2011.11.4.341
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001
- Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B-Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B-Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9
- Lal, R. and Ahlawat, N. (2015), "Axisymmetric vibrations and buckling analysis of functionally graded circular plate via differential transform method", Eur. J. Mech. A/Solids, 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004
- Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotubereinforced composite plates using the element-free kp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
- Li, X.Y., Ding, H.J. and Chen, W.Q. (2008), "Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk", Int. J. Solids Struct., 45(1), 191-210. https://doi.org/10.1016/j.ijsolstr.2007.07.023
- Liang, X., Wang, Z., Wang, L. and Liu, G. (2014), "Semi-analytical solution for three-dimensional transient response of functionally graded annular plate on a two parameter viscoelastic foundation", J. Sound Vib., 333(12), 2649-2663. https://doi.org/10.1016/j.jsv.2014.01.021
- Liang, X., Kou, H.L., Wang, L., Palmer, A.C., Wang, Z. and Liu, G. (2015), "Three-dimensional transient analysis of functionally graded material annular sector plate under various boundary conditions", Compos. Struct., 132, 584-596. https://doi.org/10.1016/j.compstruct.2015.05.066
- Lu, Y., Shi, J., Nie, G. and Zhong, Z. (2016), "An elasticity solution for transversely isotropic, functionally graded circular plates", Mech. Adv. Mater. Struct., 23(4), 451-457. https://doi.org/10.1080/15376494.2014.984091
- Ma, L.S. and Wang, T.J. (2004), "Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory", Int. J. Solids Struct., 41(1), 85-101. https://doi.org/10.1016/j.ijsolstr.2003.09.008
- Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A. (2003), "Functionally graded materials for sensor and energy applications", Mater. Sci. Eng., 362(1-2), 17-39. https://doi.org/10.1016/S0921-5093(03)00581-1
- Nie, G.J. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Methods Appl. Mech. Eng., 196(49-52), 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028
- Nie, G. and Zhong, Z. (2010), "Dynamic analysis of multi-directional functionally graded annular plates", Appl. Math. Modell., 34(3), 608-616. https://doi.org/10.1016/j.apm.2009.06.009
- Pan, E. (2003), "Exact solution for functionally graded anisotropic elastic composite laminates", J. Compos. Mater., 37(21), 1903-1920. https://doi.org/10.1177/002199803035565
- Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magneto-electro-elastic laminates in cylindrical bending", Int. J. Solids Struct., 40(24), 6859-6876. https://doi.org/10.1016/j.ijsolstr.2003.08.003
- Plevako, V.P. (1971), "On the theory of elasticity of inhomogeneous media", PMM, 35(5), 853-860.
- Reddy, J.N. (1984a), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1984b), Energy and Variational Methods in Applied Mechanics, Wiley, New York, NY, USA.
- Reddy, J.N. and Berry, J. (2012), "Nonlinear theories of axisymmetric bending of functionally graded circular plates with modified couple stress", Compos. Struct., 94(12), 3664-3668. https://doi.org/10.1016/j.compstruct.2012.04.019
- Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Eur. J. Mech. A/Solids, 18(2), 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
- Reissner, E. (1984), "On a certain mixed variational theory and a proposed application", Int. J. Numer. Methods Eng., 20(7), 1366-1368. https://doi.org/10.1002/nme.1620200714
- Reissner, E. (1986), "On a mixed variational theorem and on a shear deformable plate theory", Int. J. Numer. Methods Eng., 23(2), 193-198. https://doi.org/10.1002/nme.1620230203
- Sahraee, S. and Saidi, A.R. (2009), "Axisymmetric bending analysis of thick functionally graded circular plates using fourth-order shear deformation theory", Eur. J. Mech. A/Solids, 28(5), 974-984. https://doi.org/10.1016/j.euromechsol.2009.03.009
- Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circular plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89(1), 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003
- Schulz, U., Peters, M., Bach, F.W. and Tegeder, G. (2003), "Graded coating for thermal, wear and corrosion barriers", Mater. Sci. Eng., 362(1-2), 61-80 https://doi.org/10.1016/S0921-5093(03)00579-3
- Soldatos, K.P. and Hadjigeorgiou, V.P. (1990), "Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels", J. Sound Vib., 137(3), 369-384. https://doi.org/10.1016/0022-460X(90)90805-A
- Tornabene, F., Liverani, A. and Caligiana, G. (2012), "Laminated composite rectangular and annular plates: A GDQ solution for static analysis with a posteriori shear and normal stress recovery", Compos. Part B-Eng., 43(4), 1847-1872. https://doi.org/10.1016/j.compositesb.2012.01.065
- Wang, Y.M., Chen, S.M. and Wu, C.P. (2010a), "A meshless collocation method based on the differential reproducing kernel interpolation", Comput. Mech., 45(6), 585-606. https://doi.org/10.1007/s00466-010-0472-6
- Wang, Y., Xu, R. and Ding, H. (2010b), "Three-dimensional solution of axisymmetric bending of functionally graded circular plates", Compos. Struct., 92(7), 1683-1693. https://doi.org/10.1016/j.compstruct.2009.12.002
- Watari, F., Yokoyama, A., Saso, F. and Kawasaki, T. (1997), "Fabrication and properties of functionally graded dental implant", Compos. Part B-Eng., 28(1-2), 5-11.
- Wu, C.P. and Chang, Y.T. (2012), "A unified formulation of RMVT-based finite cylindrical layer methods for sandwich circular hollow cylinders with an embedded FGM layer", Compos. Part B-Eng., 43(8), 3318-3333. https://doi.org/10.1016/j.compositesb.2012.01.084
- Wu, C.P. and Jiang, R.Y. (2012), "A state space differential reproducing kernel method for the 3D analysis of FGM sandwich circular hollow cylinders with combinations of simply-supported and clamped edges", Compos. Struct., 94(11), 3401-3420. https://doi.org/10.1016/j.compstruct.2012.05.005
- Wu, C.P. and Jiang, R.Y. (2014), "A state space differential reproducing kernel method for the buckling analysis of carbon nanotube-reinforced composite circular hollow cylinders", CMES-Comput. Model. Eng. Sci., 97(3), 239-279.
- Wu, C.P. and Jiang, R.Y. (2015a), "Three-dimensional free vibration analysis of sandwich FGM cylinders with combinations of simply-supported and clamped edges and using the multiple time scales and meshless methods", CMC-Comput. Mater. Continua, 46(1), 17-56.
- Wu, C.P. and Jiang, R.Y. (2015b), "An asymptotic meshless method for sandwich functionally graded circular hollow cylinders with various boundary conditions", J. Sandw. Struct. Mater., 17, 469-510. https://doi.org/10.1177/1099636215577354
- Wu, C.P. and Li, H.Y. (2010), "The RMVT-and PVD-based finite layer methods for the three-dimensional analysis of multilayered composite and FGM plates", Compos. Struct., 92(10), 2476-2496. https://doi.org/10.1016/j.compstruct.2010.03.001
- Wu, C.P. and Li, H.Y. (2013a), "An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions", CMC-Comput. Mater. Continua, 34(1), 27-62.
- Wu, C.P. and Li, H.Y. (2013b), "RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions", Compos. Struct., 100, 592-608. https://doi.org/10.1016/j.compstruct.2013.01.019
- Wu, C.P. and Li, W.C. (2016), "Quasi-3D stability and vibration analyses of sandwich piezoelectric plates with an embedded CNT-reinforced composite core", Int. J. Struct. Stab. Dyn., 16(2), 1450097.
- Wu, C.P. and Liu, K.Y. (2007), "A state space approach for the analysis of doubly curved functionally graded elastic and piezoelectric shells", CMC-Comput. Mater. Continua, 6(3), 177-199.
- Wu, C.P. and Liu, Y.C. (2016), "A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells", Compos. Struct., 147, 1-15. https://doi.org/10.1016/j.compstruct.2016.03.031
- Wu, C.P. and Tsai, T.C. (2012), "Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method", Appl. Math. Modell., 36(5), 1910-1930. https://doi.org/10.1016/j.apm.2011.07.077
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
Cited by
- On asymmetric bending of functionally graded solid circular plates vol.39, pp.6, 2018, https://doi.org/10.1007/s10483-018-2337-7
- Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.347
- Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.649
- Quasi-3D static analysis of two-directional functionally graded circular plates vol.27, pp.6, 2016, https://doi.org/10.12989/scs.2018.27.6.789
- Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets vol.28, pp.5, 2016, https://doi.org/10.12989/scs.2018.28.5.541
- Dynamic analysis of non-symmetric FG cylindrical shell under shock loading by using MLPG method vol.67, pp.6, 2016, https://doi.org/10.12989/sem.2018.67.6.659
- Numerical approaches for vibration response of annular and circular composite plates vol.29, pp.6, 2018, https://doi.org/10.12989/scs.2018.29.6.759
- Geometrically nonlinear meshfree analysis of 3D-shell structures based on the double directors shell theory with finite rotations vol.31, pp.4, 2016, https://doi.org/10.12989/scs.2019.31.4.397
- Vibration of angle-ply laminated composite circular and annular plates vol.34, pp.1, 2020, https://doi.org/10.12989/scs.2020.34.1.141
- Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
- A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation vol.73, pp.4, 2016, https://doi.org/10.12989/sem.2020.73.4.407
- Axisymmetric bending of a circular plate with symmetrically varying mechanical properties under a concentrated force vol.34, pp.6, 2016, https://doi.org/10.12989/scs.2020.34.6.795
- Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077
- Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate vol.35, pp.1, 2016, https://doi.org/10.12989/scs.2020.35.1.111
- Vibrational characteristic of FG porous conical shells using Donnell's shell theory vol.35, pp.2, 2016, https://doi.org/10.12989/scs.2020.35.2.249
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2016, https://doi.org/10.12989/scs.2020.35.2.295
- Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell vol.74, pp.5, 2020, https://doi.org/10.12989/sem.2020.74.5.679
- Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
- Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers vol.36, pp.1, 2016, https://doi.org/10.12989/scs.2020.36.1.047
- Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2016, https://doi.org/10.12989/scs.2020.37.6.711
- Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.477