DOI QR코드

DOI QR Code

Comparative Analysis of 3 Experimental Mouse Model for Blood Hematology and Chemistry

  • Kong, Dae Young (Wide River Institute of Immunology, Seoul National University College of Medicine) ;
  • Park, Jung Hwan (Wide River Institute of Immunology, Seoul National University College of Medicine) ;
  • Lee, Kyo Won (Medical Research Institute & Adult Stem Cell Research Institute, Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Park, Ho (Medical Research Institute & Adult Stem Cell Research Institute, Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Cho, Jung Ah (Wide River Institute of Immunology, Seoul National University College of Medicine)
  • Received : 2016.07.19
  • Accepted : 2016.09.03
  • Published : 2016.09.30

Abstract

The immune system and neuroendocrine systems are the two key components that maintain bodily homeostasis. Peripheral blood specimens can indicate abnormalities in a body, which often cause various threats to human health, including devastating autoimmune or metabolic diseases. To develop a treatment regimen for such diseases, experimental animal models are indispensable to researchers in academic fields. In this study, we examined the peripheral blood of 3 representative mouse strains (ICR, Balb/c, and C57Bl/6), which are widely used, to investigate whether there is a difference in reference range according to animal model. We performed hematological and chemistry analysis on individuals of both genders. The results of hematology analysis showed that the number of most types of blood cells was lower in ICR than in the other two strains. The results of chemical analysis revealed no specific pattern, but different patterns according to the individual indicator. Although the distinction between ICR and B6 was prominent, differences between Balb/c and B6 were also observed for several indicators. For some indicators, totally different patterns existed between females and males. Conclusively, this study provides the information that 3 experimentally representative mouse models have their own basal levels of blood components, suggesting the importance of a careful choice of a proper mouse model in research into immune or metabolic diseases, to exclude any biases.

Keywords

References

  1. Agrawal S, Dhiman RK, Limdi JK. Evaluation of abnormal liver function tests. Postgrad Med J. 2016. 92: 223-234. https://doi.org/10.1136/postgradmedj-2015-133715
  2. Altman PL. Pathology of laboratory mice and rats. Pergamon Press. 1985.
  3. Antunes-Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiological Reviews. 2004. 84: 169-208. https://doi.org/10.1152/physrev.00017.2003
  4. Israels LG, Israels ED. Lymphocytes. Oncologist. 1999. 4: 129-137.
  5. Justice MJ, Siracusa LD, Stewart AF. Technical approaches for mouse models of human disease. Disease Models & Mechanisms. 2011. 4: 305-310. https://doi.org/10.1242/dmm.000901
  6. Keim V, Teich N, Fiedler F, Hartig W, Thiele G, Mossner J. A comparison of lipase and amylase in the diagnosis of acute pancreatitis in patients with abdominal pain. Pancreas. 1998. 16: 45-49. https://doi.org/10.1097/00006676-199801000-00008
  7. Kim IS, Kim HT, Kim EJ, Lee EJ. A comparative study of the concentration of salivary and blood glucose in normal and diabetic subjects. J Exp Biomed Sci. 2013. 19: 105-111.
  8. Kuo T, McQueen A, Chen TC, Wang JC. Regulation of glucose homeostasis by glucocorticoids. Adv Exp Med Biol. 2015. 872: 99-126.
  9. Lee JY, Kim DH, Kim HJ. Humanized (SCID) mouse as a model to study human leukemia. Biomedical Science Letters. 2015. 21: 51-59. https://doi.org/10.15616/BSL.2015.21.2.51
  10. Levine BS, Rodriguez M, Felsenfeld AJ. Serum calcium and bone: effect of PTH, phosphate, vitamin D and uremia. Nefrologia. 2014. 34: 658-669.
  11. Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002. 420: 520-562. https://doi.org/10.1038/nature01262
  12. Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012. 27: 2039-2048. https://doi.org/10.1007/s00467-012-2175-z
  13. Piva E, Brugnara C, Spolaore F, Plebani M. Clinical utility of reticulocyte parameters. Clinics in Laboratory Medicine. 2015. 35: 133-163. https://doi.org/10.1016/j.cll.2014.10.004
  14. Postal M, Appenzeller S. The importance of cytokines and autoantibodies in depression. Autoimmun Rev. 2015. 14: 30-35. https://doi.org/10.1016/j.autrev.2014.09.001
  15. Procaccini C, La Rocca C, Carbone F, De Rosa V, Galgani M, Matarese G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev Comp Immunol. 2016. Epub ahead of print.
  16. Reichlin S. Neuroendocrine-immune interactions. N Engl J Med. 1993. 329: 1246-1253. https://doi.org/10.1056/NEJM199310213291708
  17. Rust JH. Animal models for human diseases. Perspect Biol Med. 1982. 25: 662-672. https://doi.org/10.1353/pbm.1982.0067
  18. Suzuki O, Matsuda J, Takano K, Yamamoto Y, Asano T, Naiki M, Kusanagi M. Effect of genetic background on establishment of mouse embryonic stem cells. Experimental Animals. 1999. 48: 213-216. https://doi.org/10.1538/expanim.48.213
  19. Szewczuk M, Czerniawska-Piatkowska E, Palewski S. The effect of colostral supplement on the serum protein fractions, health status and growth of calves. Archiv Fur Tierzucht-Archives of Animal Breeding. 2011. 54: 115-126. https://doi.org/10.5194/aab-54-115-2011
  20. Takaya Y, Yoshihara F, Yokoyama H, Kanzaki H, Kitakaze M, Goto Y, Anzai T, Yasuda S, Ogawa H, Kawano Y. Risk stratification of acute kidney injury using the blood urea nitrogen/creatinine ratio in patients with acute decompensated heart failure. Circ J. 2015. 79: 1520-1525. https://doi.org/10.1253/circj.CJ-14-1360
  21. Watanabe H, Numata K, Ito T, Takagi K, Matsukawa A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock. 2004. 22: 460-466. https://doi.org/10.1097/01.shk.0000142249.08135.e9
  22. Yang H, Wang H, Jaenisch R. Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nature Protocols. 2014. 9: 1956-1968. https://doi.org/10.1038/nprot.2014.134