Numerical Study for Prediction of Rock Falls Around Jointed Limestone Underground Opening due to Blast Vibration

발파진동에 의한 절리암반 지하공동의 낙석발생 예측에 관한 수치해석적 연구

  • 김현수 (전북대학교 자원.에너지공학과) ;
  • 김승곤 (전북대학교 자원.에너지공학과) ;
  • 조상호 (전북대학교 자원.에너지공학과)
  • Received : 2016.09.27
  • Accepted : 2016.09.29
  • Published : 2016.09.30

Abstract

Recently, transition from open pit to underground mining in limestone mines is an increasing trend in Korea due to environmental issues such as noise, dust and vibrations caused by crushers and equipment. The severe damages in the surrounding rock mass of underground opening caused by explosive blasting may lead to rock fall hazards or casualties. It is well known that variables which mainly affect blast-induced rock falls in underground mining are: blast vibration level, joint orientation and distribution and shape of the cross sections of underground structures. In this study, UDEC program, which is a DEM code, is used to simulate blast vibration-induced rock fall in underground openings. Variation of joint space, joint angle and joint normal stiffness was considered to investigate the effect of joint characteristics on the blast vibration-induced rock fall in underground opening. Finally, jointed rock mass models considering blast-induced damage zone were examined to simulate the critical blast vibration value which may cause rock falls in underground opening.

최근 석회석광산은 분진 소음 등 환경적인 문제와 함께 석회석 품위 저하 현상으로 갱내 채광이 증가하고 있다. 석회석을 파쇄시키기 위한 파쇄 시설을 갱내 설치하려면 대규모 지하공동이 필요하게 되며, 공동의 규모가 커짐에 따라 낙석이나 낙반의 발생 가능성이 높아지게 된다. 그리고 석회석 지하공동 주변 암반은 다양한 절리가 발달하여 낙석 발생에 영향을 미치는 것으로 알려져 있다. 본 연구에서는 채광 발파 시 대형갱도 내 낙석발생 여부 관찰과 발파진동 계측을 수행하여, 이를 바탕으로 불연속면 수치해석 소프트웨어인 UDEC를 이용하여 절리암반 동해석 모델을 제안하고 발파진동 여기에 의한 대형 지하갱도의 낙석 발생을 해석하였다. 또한 절리암반 모델에 다양한 절리특성(경사각, 간격)의 변화와 발파굴착 손상영역을 고려하였다.

Keywords

References

  1. 권민혁, 최성웅, 김창오, 2016, 굴착손상영역을 고려한 대형 석회석 갱내채광장의 안정성 분석 연구, TUNNEL & UNDERGROUND SPACE, Vol. 26, No. 2, pp. 131-142. https://doi.org/10.7474/TUS.2016.26.2.131
  2. Chang, S.H., Shin, I.J., Choi, Y.K. and Lee, C.I., 2000, A study on the Evaluation of Damaged Zone around Tunnel Induced by Blasting, Journal of the Korean Geotechnical Society, Vol. 16, No. 5, 129-140.
  3. Cundall. P. and Strack. O, 1979, A discrete numerical model for granular assemblies, Geotechnique, Vol. 29, No. 1, pp. 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  4. Deng, X.F., Zhu, J.B., Chen, S.J., Zhao, Z.Y., Zhou, Y.X. and Zhao, J., 2014, Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses, Tunnelling and Underground Space Technology, 43, pp. 88-100. https://doi.org/10.1016/j.tust.2014.04.004
  5. Hoek, E. and Diederichs, M., 2006, Empirical estimation of rock mass modulus, In. J. Rock Mech. Min Sci. 43.2, pp. 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005
  6. Zhao, H.B., Long, Y., Li, X.H. and Lu, L., 2015, Experimental and Numerical Investigation of the Effect of Blast-induced vibration from Adjacent Tunnel on Existing Tunnel, Tunnel Engineering, KSCE Journal of Civil Engineering, pp. 1-9.