Lifespan Extending Effects of Helianthus tuberosus Linne in C. elegans

예쁜꼬마선충을 이용한 돼지감자의 수명 연장 효능

  • 이병주 (우석대학교 약학대학) ;
  • 윤영진 (우석대학교 약학대학) ;
  • 오종우 (우석대학교 약학대학) ;
  • 박지원 (우석대학교 약학대학) ;
  • 이현주 (우석대학교 약학대학) ;
  • 김용성 (우석대학교 약학대학) ;
  • 차동석 (우석대학교 약학대학) ;
  • 권진 (한국복지대학 의료보장구과) ;
  • 오찬호 (우석대학교 식품생명공학과) ;
  • 전훈 (우석대학교 약학대학)
  • Received : 2016.07.28
  • Accepted : 2016.09.21
  • Published : 2016.09.30

Abstract

Helianthus tuberosus Linne (Compositae) has been widely used as a folk remedy to treat various ailments including fever, bleeding, fracture and contusion. This study was designed to elucidate the lifespan extending activities MeOH extract of the tubers of Helianthus tuberosus Linne (MHT) using Caenorhabditis elegans (C. elegans) model system. In the current study, we found that the lifespan of worms was significantly extended by MHT supplement, dose-dependently. MHT also provided robust protection against various stress environments such as osmotic, thermal and oxidative condition. In addition, elevated antioxidant enzyme activities by MHT resulted in attenuation of intracellular reactive oxygen spices (ROS) levels, suggesting antioxidant capacity of MHT might be associated with longevity properties. Herein, we showed that altered food intake and growth of worms were also involved in the MHT activity. Furthermore, MHT increased body movement in aged worms, indicating possible role for MHT in healthspan.

Keywords

References

  1. Bowen, R. L. and Atwood, C. S. (2004) Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50: 265-290. https://doi.org/10.1159/000079125
  2. Dillin, A., Gottschling, D. E. and Nystrom, T. (2014) The good and the bad of being connected: the integrons of aging. Curr. Opin. Cell Biol. 26: 107-112. https://doi.org/10.1016/j.ceb.2013.12.003
  3. Fulop, T., Larbi, A., Witkowski, J. M., McElhaney, J., Loeb, M., Mitnitski, A. and Pawelec, G. (2010) Aging, frailty and age-related diseases. Biogerontology 11: 547-563. https://doi.org/10.1007/s10522-010-9287-2
  4. Olovnikov, A. M. (1996) Telomeres, telomerase, and aging: origin of the theory. Exp. Gerontol. 31: 443-448. https://doi.org/10.1016/0531-5565(96)00005-8
  5. Harman, D. (1992) Free radical theory of aging. Mutation Research/DNAging 275: 257-266. https://doi.org/10.1016/0921-8734(92)90030-S
  6. Knight, J. A. (1995) The process and theories of aging. Ann. Clin. Lab. Sci. 25: 1-12.
  7. Curtis, H. J. (1963) Biological mechanisms underlying the aging process. Science 141: 686-694. https://doi.org/10.1126/science.141.3582.686
  8. Weinert, B. T. and Timiras, P. S. (2003) Invited review: theories of aging. J. Appl. Physiol. 95: 1706-1716. https://doi.org/10.1152/japplphysiol.00288.2003
  9. Walford, R. L. (1969) The immunologic theory of aging. Immunol. Rev. 2: 171-171. https://doi.org/10.1111/j.1600-065X.1969.tb00210.x
  10. Beckman, K. B. and Ames, B. N. (1998) The free radical theory of aging matures. Physiol. Rev. 78: 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
  11. Oliveira, B. F., Nogueira-Machado, J. A. and Chaves, M. M. (2010) The role of oxidative stress in the aging process. The Scientific World Journal. 10: 1121-1128. https://doi.org/10.1100/tsw.2010.94
  12. Wu, Z., Smith, J. V., Paramasivam, V., Butko, P., Khan, I., Cypser, J. R. and Luo, Y. (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell. Mol. Biol. 48: 725-731.
  13. Ishii, N., Senoo-Matsuda, N., Miyake, K., Yasuda, K., Ishii, T., Hartman, P. S. and Furukawa, S. (2004) Coenzyme Q 10 can prolong C. elegans lifespan by lowering oxidative stress. Mech. Ageing Dev. 125: 41-46. https://doi.org/10.1016/j.mad.2003.10.002
  14. 안덕균 (1998) 원색한국본초도감. 112. 교학사. 서울.
  15. Johansson, E., Prade, T., Angelidaki, I., Svensson, S., Newson, W. R., Gunnarsson, I. B. and Hovmalm, H. P. (2015) Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int. J. Mol. Sci. 16: 8997-9016. https://doi.org/10.3390/ijms16048997
  16. Kleessen, B., Schwarz, S., Boehm, A., Fuhrmann, H., Richter, A., Henle, T. and Krueger, M. (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br. J. Nutr. 98: 540-549. https://doi.org/10.1017/S0007114507730751
  17. Kim, J., Bae, C. and Cha, Y. (2010) Helianthus tuberosus extract has anti-diabetes effects in HIT-T15 cells. J. Korean Soc. Food Sci. Nutr. 39: 31-35. https://doi.org/10.3746/jkfn.2010.39.1.031
  18. Bach, V., Kidmose, U., Bjorn, G. K. and Edelenbos, M. (2012) Effects of harvest time and variety on sensory quality and chemical composition of Jerusalem artichoke (Helianthus tuberosus) tubers. Food Chem. 133: 82-89. https://doi.org/10.1016/j.foodchem.2011.12.075
  19. Baltacioglu, C. and Esin, A. (2012) Chips production from Jerusalem artichoke (Helianthus tuberosus L.). Food and Nutrition Sciences 3: 1321. https://doi.org/10.4236/fns.2012.39174
  20. Fiordaliso, M., Kok, N., Desager, J., Goethals, F., Deboyser, D., Roberfroid, M. and Delzenne, N. (1995) Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids 30: 163-167. https://doi.org/10.1007/BF02538270
  21. Ahima, R. S. (2009) Connecting obesity, aging and diabetes. Nat. Med. 15: 996-997. https://doi.org/10.1038/nm0909-996
  22. Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., Nojima, A., Nabetani, A., Oike, Y. and Matsubara, H. (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat. Med. 15: 1082-1087. https://doi.org/10.1038/nm.2014
  23. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  24. Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544. https://doi.org/10.1073/pnas.92.16.7540
  25. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  26. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  27. Horikawa, M. and Sakamoto, K. (2009) Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 390: 1402-1407. https://doi.org/10.1016/j.bbrc.2009.11.006
  28. Ibrahim, H. R., Hoq, M. I. and Aoki, T. (2007) Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 41: 631-640. https://doi.org/10.1016/j.ijbiomac.2007.08.005
  29. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
  30. Leung, M. C., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M. and Meyer, J. N. (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106: 5-28. https://doi.org/10.1093/toxsci/kfn121
  31. Felix, M. and Braendle, C. (2010) The natural history of Caenorhabditis elegans. Current Biology 20: R965-R969. https://doi.org/10.1016/j.cub.2010.09.050
  32. Kenyon, C. J. (2010) The genetics of ageing. Nature. 464: 504-512. https://doi.org/10.1038/nature08980
  33. Kim, Y., Lee, S., Hwang, J., Kim, E., Park, P. and Jeon, B. (2011) Antioxidant activity and protective effects of extracts from Helianthus tuberosus L. leaves on t-BHP induced oxidative stress in chang cells. J. Korean Soc. Food. Sci. Nutr. 40: 1525-1531. https://doi.org/10.3746/jkfn.2011.40.11.1525
  34. Chen, F., Long, X., Liu, Z., Shao, H. and Liu, L. (2014) Analysis of phenolic acids of Jerusalem artichoke (Helianthus tuberosus L.) responding to salt-stress by liquid chromatography/ tandem mass spectrometry. The Scientific World Journal doi. 10.1155/2014/ 568043.
  35. Bordone, L. and Guarente, L. (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6: 298-305. https://doi.org/10.1038/nrm1616
  36. Morck, C. and Pilon, M. (2006) C. elegans feeding defective mutants have shorter body lengths and increased autophagy. BMC Dev. Biol. 6: 39. https://doi.org/10.1186/1471-213X-6-39