참고문헌
- T. Virtanen et al. Techniques for Noise Robustness in Automatic Speech Recognition (John Wiley & Sons, 2012)
- J. Huang et al. Improved modulation spectrum enhancement methods for robust speech recognition. Signal Process 92, 2791-2814 (2012) https://doi.org/10.1016/j.sigpro.2012.04.005
- I. Mporas et al. Context-adaptive pre-processing scheme for robust speech recognition in fast-varying noise environment. Signal Process 91, 2101-2111 (2011) https://doi.org/10.1016/j.sigpro.2011.03.020
- Y. Takahashi, et al. Blind spatial subtraction array for speech enhancement in noisy environment. IEEE Transactions on Audio Speech, Language Processing 17, 650-664 (2009) https://doi.org/10.1109/TASL.2008.2011517
- F. Nesta & M. Matassoni. Robust automatic speech recognition through on-line semi blind source extraction. in Proc. 1st Int. Workshop on Machine Listening in Multisource Environments (CHiME), 18-23 (2011)
- M. Wu & DeLiang Wang, A two-stage algorithm for one-microphone reverberant speech enhancement. Audio, Speech, and Language Processing, IEEE Transactions on 14, 774-784 (2006) https://doi.org/10.1109/TSA.2005.858066
- K. Lebart et al. A new method based on spectral subtraction for speech dereverberation. Acta Acustica United with Acustica 87, 359-366 (2001)
- EA. Krueger & R. Haeb-Umbach. Model-based feature enhancement for reverberant speech recognition. IEEE Transcations on Audio, Speech and Language Processing 18, 1692-1707 (2010) https://doi.org/10.1109/TASL.2010.2049684
- A. Krueger, et al. Bayesian feature enhancement for ASR of noisy reverberant real-world data. in Proc. Interspeech, Portland, USA (2012)
- C. Han et al. Reverberation and Noise Robust Feature Compensation Based on IMM. Audio, Speech, and Language Processing, IEEE Transactions on 21, 1598-1611 (2013) https://doi.org/10.1109/TASL.2013.2256893
- H. Bass, H. Bauer & L. Evans, Atmospheric absorption of sound: Analytical expressions. J. Acoust. Soc. Am. 52, 821-825, (1972) https://doi.org/10.1121/1.1913183
- Ji-Won Cho & Hyung-Min Park. Independent Vector Analysis Followed by HMM-Based Feature Enhancement for Robust Speech recognition. Signal Processing 120, 200-208 (2015)
- Ji-Won Cho & Hyung-Min Park. An efficient HMMbased feature enhancement method with filter estimation for reverberant speech recognition. IEEE Signal Processing Letters 20, 1199-1202 (2013) https://doi.org/10.1109/LSP.2013.2283585
- H. Hirsch & D. Pearce. The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions. in ASR2000-Automatic Speech Recognition: Challenges for the New Millenium ISCA Tutorial and Research Workshop (ITRW), (2000)
- S. Young et al. The HTK Book (Entropic Cambridge Research Laboratory Cambridge, 1997)
- S. Nakaumra K. HIyane, F. Asano, T. Nishiura and T. Yama da, Acoustical sound database in real environments for sound scene understanding and hands-free speech recognition, in LREC (2000)