DOI QR코드

DOI QR Code

Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

  • Naqvi, Ahmad Abu Turab (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia) ;
  • Anjum, Farah (Female College of Applied Medical Science, Taif University) ;
  • Khan, Faez Iqbal (School of Chemistry and Chemical Engineering, Henan University of Technology) ;
  • Islam, Asimul (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia) ;
  • Ahmad, Faizan (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia) ;
  • Hassan, Md. Imtaiyaz (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia)
  • Received : 2016.07.20
  • Accepted : 2016.08.29
  • Published : 2016.09.30

Abstract

Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

Keywords

References

  1. Shiota S, Suzuki R, Yamaoka Y. The significance of virulence factors in Helicobacter pylori. J Dig Dis 2013;14:341-349. https://doi.org/10.1111/1751-2980.12054
  2. Testerman TL, Morris J. Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol 2014;20:12781-12808. https://doi.org/10.3748/wjg.v20.i36.12781
  3. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311-1315.
  4. Cover TL, Blaser MJ. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med 1996;41:85-117.
  5. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997;388:539-547. https://doi.org/10.1038/41483
  6. Yamaoka Y, Graham DY. Helicobacter pylori virulence and cancer pathogenesis. Future Oncol 2014;10:1487-1500. https://doi.org/10.2217/fon.14.29
  7. Cid TP, Fernandez MC, Benito Martinez S, Jones NL. Pathogenesis of Helicobacter pylori infection. Helicobacter 2013;18 Suppl 1:12-17. https://doi.org/10.1111/hel.12076
  8. Nakamura S, Matsumoto T. Helicobacter pylori and gastric mucosa-associated lymphoid tissue lymphoma: recent progress in pathogenesis and management. World J Gastroenterol 2013;19:8181-8187. https://doi.org/10.3748/wjg.v19.i45.8181
  9. Tomoda A, Kamiya S, Suzuki H. Helicobacter pylori and pathogenesis. Biomed Res Int 2015;2015:304768.
  10. Watari J, Chen N, Amenta PS, Fukui H, Oshima T, Tomita T, et al. Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol 2014;20:5461-5473. https://doi.org/10.3748/wjg.v20.i18.5461
  11. de Bernard M, Josenhans C. Pathogenesis of Helicobacter pylori infection. Helicobacter 2014;19 Suppl 1:11-18. https://doi.org/10.1111/hel.12160
  12. De Falco M, Lucariello A, Iaquinto S, Esposito V, Guerra G, De Luca A. Molecular mechanisms of Helicobacter pylori pathogenesis. J Cell Physiol 2015;230:1702-1707. https://doi.org/10.1002/jcp.24933
  13. Hagiwara T, Mukaisho K, Nakayama T, Hattori T, Sugihara H. Proton pump inhibitors and Helicobacter pylori-associated pathogenesis. Asian Pac J Cancer Prev 2015;16:1315-1319. https://doi.org/10.7314/APJCP.2015.16.4.1315
  14. Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000;22:283-297. https://doi.org/10.1093/oxfordjournals.epirev.a018040
  15. Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS One 2015;10:e0124177. https://doi.org/10.1371/journal.pone.0124177
  16. Naqvi AA, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Mycobacterium leprae Br4923, a causative agent of leprosy. Genome 2015;58:25-42. https://doi.org/10.1139/gen-2014-0178
  17. Shahbaaz M, Ahmad F, Hassan MI. Structure-based function analysis of putative conserved proteins with isomerase activity from Haemophilus influenzae. 3 Biotech 2015;5:741-763.
  18. Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards new drug targets? Function prediction of putative proteins of Neisseria meningitidis MC58 and their virulence characterization. OMICS 2015;19:416-434. https://doi.org/10.1089/omi.2015.0032
  19. Shahbaaz M, Bisetty K, Ahmad F, Hassan I. Current advances in the identification and characterization of putative drug and vaccine targets in the bacterial genomes. Curr Top Med Chem 2016;16:1040-1069.
  20. Kumar K, Prakash A, Islam A, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Neisseria gonorrhoeae. Lett Drug Des Discov 2016;13:451-464. https://doi.org/10.2174/1570180812666150901223055
  21. Kumar K, Prakash A, Anjum F, Islam A, Ahmad F, Hassan MI. Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets. 3 Biotech 2015;5:561-576.
  22. Kumar K, Prakash A, Tasleem M, Islam A, Ahmad F, Hassan MI. Functional annotation of putative hypothetical proteins from Candida dubliniensis. Gene 2014;543:93-100. https://doi.org/10.1016/j.gene.2014.03.060
  23. Shahbaaz M, Hassan MI, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One 2013;8:e84263. https://doi.org/10.1371/journal.pone.0084263
  24. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003;31:3784-3788. https://doi.org/10.1093/nar/gkg563
  25. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608-1615. https://doi.org/10.1093/bioinformatics/btq249
  26. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522-2524. https://doi.org/10.1093/bioinformatics/bti309
  27. Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004;13:1402-1406. https://doi.org/10.1110/ps.03479604
  28. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785-786. https://doi.org/10.1038/nmeth.1701
  29. Bendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol 2005;5:58. https://doi.org/10.1186/1471-2180-5-58
  30. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001;17:849-850. https://doi.org/10.1093/bioinformatics/17.9.849
  31. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  32. Garg A, Gupta D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 2008;9:62. https://doi.org/10.1186/1471-2105-9-62
  33. Saha S, Raghava GP. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics Proteomics Bioinformatics 2006;4:42-47. https://doi.org/10.1016/S1672-0229(06)60015-6
  34. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  35. Khan FI, Shahbaaz M, Bisetty K, Waheed A, Sly WS, Ahmad F, et al. Large scale analysis of the mutational landscape in $\beta$-glucuronidase: a major player of mucopolysaccharidosis type VII. Gene 2016;576(1 Pt 1):36-44. https://doi.org/10.1016/j.gene.2015.09.062
  36. Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. Comput Biol Chem 2015;59 Pt A:67-80.
  37. Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014;71:229-255. https://doi.org/10.1007/s00018-013-1341-1
  38. Devika NT, Amresh P, Hassan MI, Ali BM. Molecular modeling and simulation of the human eNOS reductase domain, an enzyme involved in the release of vascular nitric oxide. J Mol Model 2014;20:2470. https://doi.org/10.1007/s00894-014-2470-7
  39. Hassan MI. Editorial. Recent advances in the structure-based drug design and discovery. Curr Top Med Chem 2016;16:899-900.
  40. Hassan MI, Bilgrami S, Kumar V, Singh N, Yadav S, Kaur P, et al. Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. J Mol Biol 2008;384:663-672. https://doi.org/10.1016/j.jmb.2008.09.072
  41. Hassan MI, Kumar V, Singh TP, Yadav S. Structural model of human PSA: a target for prostate cancer therapy. Chem Biol Drug Des 2007;70:261-267. https://doi.org/10.1111/j.1747-0285.2007.00553.x
  42. Hassan MI, Kumar V, Somvanshi RK, Dey S, Singh TP, Yadav S. Structure-guided design of peptidic ligand for human prostate specific antigen. J Pept Sci 2007;13:849-855. https://doi.org/10.1002/psc.911
  43. Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS. High resolution crystal structure of human $\beta$-glucuronidase reveals structural basis of lysosome targeting. PLoS One 2013;8:e79687. https://doi.org/10.1371/journal.pone.0079687
  44. Hoda N, Naz H, Jameel E, Shandilya A, Dey S, Hassan MI, et al. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J Biomol Struct Dyn 2016;34:572-584. https://doi.org/10.1080/07391102.2015.1046934
  45. Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 2016:1-14.
  46. Naz F, Shahbaaz M, Khan S, Bisetty K, Islam A, Ahmad F, et al. PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. J Mol Graph Model 2015;62:245-252. https://doi.org/10.1016/j.jmgm.2015.10.009
  47. Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012;40:D302-D305. https://doi.org/10.1093/nar/gkr931
  48. Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014;30:1236-1240. https://doi.org/10.1093/bioinformatics/btu031
  49. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-D815. https://doi.org/10.1093/nar/gks1094
  50. Sillitoe I, Cuff AL, Dessailly BH, Dawson NL, Furnham N, Lee D, et al. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res 2013;41:D490-D498. https://doi.org/10.1093/nar/gks1211
  51. Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res 2000;28:257-259. https://doi.org/10.1093/nar/28.1.257
  52. Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013;41:D377-D386. https://doi.org/10.1093/nar/gks1118
  53. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res 2004;32:D138-D141. https://doi.org/10.1093/nar/gkh121
  54. Geer LY, Domrachev M, Lipman DJ, Bryant SH. CDART: protein homology by domain architecture. Genome Res 2002;12:1619-1623. https://doi.org/10.1101/gr.278202
  55. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: Webbased support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 2003;31:3692-3697. https://doi.org/10.1093/nar/gkg600
  56. Rappoport N, Karsenty S, Stern A, Linial N, Linial M. ProtoNet 6.0: organizing 10 million protein sequences in a compact hierarchical family tree. Nucleic Acids Res 2012;40:D313-D320. https://doi.org/10.1093/nar/gkr1027
  57. Khan S, Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Classification and functional analyses of putative conserved proteins from Chlamydophila pneumoniae CWL029. Interdiscip Sci 2015 Dec 9 [Epub]. http://dx.doi.org/10.1007/s12539-015-0134-7.
  58. Kadokura H, Katzen F, Beckwith J. Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 2003;72:111-135. https://doi.org/10.1146/annurev.biochem.72.121801.161459
  59. Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997;326(Pt 3):929-939. https://doi.org/10.1042/bj3260929u
  60. Gronow S, Brabetz W, Brade H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur J Biochem 2000;267:6602-6611. https://doi.org/10.1046/j.1432-1327.2000.01754.x
  61. Green JM, Merkel WK, Nichols BP. Characterization and sequence of Escherichia coli pabC, the gene encoding aminodeoxychorismate lyase, a pyridoxal phosphate-containing enzyme. J Bacteriol 1992;174:5317-5323. https://doi.org/10.1128/jb.174.16.5317-5323.1992
  62. Higgins CF. ABC transporters: physiology, structure and mechanism: an overview. Res Microbiol 2001;152:205-210. https://doi.org/10.1016/S0923-2508(01)01193-7
  63. Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 1998;22:1-20. https://doi.org/10.1111/j.1574-6976.1998.tb00358.x
  64. Labigne A, de Reuse H. Determinants of Helicobacter pylori pathogenicity. Infect Agents Dis 1996;5:191-202.
  65. Bonhivers M, Ghazi A, Boulanger P, Letellier L. FhuA, a transporter of the Escherichia coli outer membrane, is converted into a channel upon binding of bacteriophage T5. EMBO J 1996;15:1850-1856.
  66. Kisiela M, Skarka A, Ebert B, Maser E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J Steroid Biochem Mol Biol 2012;129:31-46. https://doi.org/10.1016/j.jsbmb.2011.08.002
  67. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, et al. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun 2013;81:629-635. https://doi.org/10.1128/IAI.01035-12
  68. Goebl M, Yanagida M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 1991;16:173-177. https://doi.org/10.1016/0968-0004(91)90070-C
  69. Praefcke GJ, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 2004;5:133-147. https://doi.org/10.1038/nrm1313
  70. Marais A, Mendz GL, Hazell SL, Megraud F. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol Mol Biol Rev 1999;63:642-674.
  71. Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol 1993;38:371-377. https://doi.org/10.1099/00222615-38-5-371
  72. Kawagishi I, Homma M, Williams AW, Macnab RM. Characterization of the flagellar hook length control protein fliK of Salmonella typhimurium and Escherichia coli. J Bacteriol 1996;178:2954-2959. https://doi.org/10.1128/jb.178.10.2954-2959.1996
  73. Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol 1993;9:671-680. https://doi.org/10.1111/j.1365-2958.1993.tb01727.x
  74. Chaturvedi G, Tewari R, Mrigank, Agnihotri N, Vishwakarma RA, Ganguly NK. Inhibition of Helicobacter pylori adherence by a peptide derived from neuraminyl lactose binding adhesin. Mol Cell Biochem 2001;228:83-89. https://doi.org/10.1023/A:1013314604403
  75. Scott MS, Calafell SJ, Thomas DY, Hallett MT. Refining protein subcellular localization. PLoS Comput Biol 2005;1:e66. https://doi.org/10.1371/journal.pcbi.0010066
  76. Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y. Predicting function: from genes to genomes and back. J Mol Biol 1998;283:707-725. https://doi.org/10.1006/jmbi.1998.2144

Cited by

  1. vol.22, pp.10834389, 2017, https://doi.org/10.1111/hel.12409
  2. Sequence, structure and evolutionary analysis of cold shock domain proteins, a member of OB fold family pp.1010061X, 2018, https://doi.org/10.1111/jeb.13382