DOI QR코드

DOI QR Code

Anti-multi drug resistant pathogen activity of siderochelin A, produced by a novel Amycolatopsis sp. KCTC 29142

Amycolatopsis sp. KCTC 29142로부터 유래된 siderochelin A의 다제 내성 균주에 대한 항균활성

  • Lee, Dong-Ryung (Center for Nutraceutical and Pharmaceutical Materials Myongji University) ;
  • Cheng, Jinhua (Center for Nutraceutical and Pharmaceutical Materials Myongji University) ;
  • Lee, Sung-Kwon (Center for Nutraceutical and Pharmaceutical Materials Myongji University) ;
  • Hong, Hee-Jeon (Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University) ;
  • Song, Jaekyeong (Division of Agricultural Microbiology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yang, Seung Hwan (Department of Biotechnology, Chonnam National University) ;
  • Suh, Joo-Won (Center for Nutraceutical and Pharmaceutical Materials Myongji University)
  • 이동령 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 성금화 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 이성권 (명지대학교 농생명바이오식의약소재개발사업단) ;
  • 홍희전 (옥스퍼드 브룩스대학 생의과학과) ;
  • 송재경 (국립농업과학원 농업미생물과) ;
  • 양승환 (전남대학교 생명산업공학과) ;
  • 서주원 (명지대학교 농생명바이오식의약소재개발사업단)
  • Received : 2016.06.17
  • Accepted : 2016.08.09
  • Published : 2016.09.30

Abstract

A novel Amycolatopsis strain KCTC 29142 was isolated and characterized based on the polyphasic taxonomic analysis including morphological observation, phylogenetic analysis, physiological and chemotaxonomic characteristics. The ethyl acetate extract of strain KCTC 29142 culture broth showed strong antibacterial activity and the active compound was identified as siderochelin A, a ferrous-ion chelating compound. In this study, siderochelin A showed good activity against multi-drug resistant pathogens, including Acinetobacter baumanii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and Escherichia coli (E. coli). The minimum inhibitory activity against clinical isolates was also determined.

본 연구에서는 신규 Amycolatopsis 균주 KCTC 29142를 분리하여 형태학적 관찰, 계통분석 및 화학분류학적 분석 등 다상 분류분석을 통해 분석하였다. KCTC 29142 균주의 에틸아세테이트추출물은 강한 항균활성을 나타났고, 활성물질은 철 이온 킬레이트 물질인 siderochelin A로 동정되었다. 본 연구에서 분리된 siderochelin A는 다제내성균인 Acinetobacter baumanii, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), 및 Escherichia coli (E. coli)에 대해 강한 활성을 보였고, 임상에서 분리된 다제내성균에 대한 MIC를 결정하였다.

Keywords

References

  1. Anderson, D.I. 2003. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6, 452-456. https://doi.org/10.1016/j.mib.2003.09.001
  2. Baker, D. 1990. Methods for the isolation, culture and characterization of the Frankiaceae: soil actinomycetes and symbionts of actinorhizal plants. In Labeda, D.P. (eds), Isolation of Biotechnological Organisms from Nature, pp. 213-236. McGraw-Hill Publishing Co., New York, USA.
  3. Bala, S., Khanna, R., Dadhwal, M., Prabagaran, S.R., Shivaji, S., Cullum, J., and Lal, R. 2004. Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov. Int. J. Syst. Evol. Microbiol. 54, 1145-1149. https://doi.org/10.1099/ijs.0.02901-0
  4. Becker, B., Lechevalier, M.P., and Lechevalier, H.A. 1965. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl. Microbiol. 13, 236-243.
  5. Chan, G.C., Chan, S., Ho, P.L., and Ha, S.Y. 2009. Effects of chelators (deferoxamine, deferiprone and deferasirox) on the growth of Klebsiella pneumoniae and Aeromonas hydrophila isolated from transfusion-dependent thalassemia patients. Hemoglobin 33, 352-360. https://doi.org/10.3109/03630260903211888
  6. Cheng, J., Jin, Y.Y., Yang, S.H., and Suh, J.W. 2013. Isolation and characterization of anti-methicillin-resistant Staphylococcus aureus/vancomycin-resistant Enterococcus compound from Streptomyces bungoensis MJM2077. J. Korean Soc. Appl. Biol. Chem. 56, 107-111. https://doi.org/10.1007/s13765-012-2227-x
  7. Cosgrove, S.E. 2006. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin. Infect. Dis. 42, 82-89. https://doi.org/10.1086/498512
  8. Euzeby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on the internet. Int. J. Syst. Evol. Microbiol. 47, 590-592. https://doi.org/10.1099/00207713-47-2-590
  9. Gao, B. and Gupta, R.S. 2012. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol. Mol. Biol. Rev. 76, 66-112. https://doi.org/10.1128/MMBR.05011-11
  10. Gordon, R.E., Barnett, D.A., Handerhan, J.E., and Pang, C.H.N. 1974. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int. J. Syst. Bacteriol. 24, 54-63. https://doi.org/10.1099/00207713-24-1-54
  11. Kempf, M. and Rolain, J.M. 2012. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe, clinical impact and therapeutic options. Int. J. Antimicrob. Agents 39, 105-114. https://doi.org/10.1016/j.ijantimicag.2011.10.004
  12. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e, a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  13. Kim, C.M. and Shin, S.H. 2009. Effect of iron-chelator deferiprone on the in vitro growth of staphylococci. J. Korean Med. Sci. 24, 289-295. https://doi.org/10.3346/jkms.2009.24.2.289
  14. Lane, D.J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.) Nucleic Acid Techniques in Bacterial Systematics, pp. 115-176. Wiley, Chichester, UK.
  15. Lechevalier, M.P., Prauser, H., Labeda, D.P., and Ruan, J.S. 1986. Two new genera of nocardioform actinomycetes, Amycolata gen. nov. and Amycolatopsis gen. nov. Int. J. Syst. Bacteriol. 36, 29-37. https://doi.org/10.1099/00207713-36-1-29
  16. Lin, M.F. and Lan, C.Y. 2014. Antimicrobial resistance in Acinetobacter baumannii, from bench to bedside. World J. Clin. Cases 2, 787-814. https://doi.org/10.12998/wjcc.v2.i12.787
  17. Liu, W.C., Fisher, S.M., Wells, J.S. Jr., Ricca, C.S., Principe, P.A., Trejo, W.H., Bonner, D.P., Gougoutos, J.Z., Toeplitz, B.K., and Sykes, R.B. 1981. Siderochelin, a new ferrous-ion chelating agent produced by Norcardia. J. Antibiot. (Tokyo) 34, 791-799. https://doi.org/10.7164/antibiotics.34.791
  18. Lode, H.M. 2009. Clinical impact of antibiotic-resistant Gram-positive pathogens. Clin. Microbiol. Infect. 15, 212-217. https://doi.org/10.1111/j.1469-0691.2009.02738.x
  19. Lu, C.H., Ye, F.W., and Shen, Y.M. 2015. Siderochelins with anti-mycobacterial activity from Amycolatopsis sp. LZ149. Chin. J. Nat. Med. 13, 69-72.
  20. Matsumoto, N., Iinuma, H., Sawa, T., Takeuchi, T., Hirano, S., Yoshioka, T., and Ishizuka, M. 1997. Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. II. Effect on type II collagen-induced arthritis in mice. J. Antibiot. (Tokyo) 50, 906-911. https://doi.org/10.7164/antibiotics.50.906
  21. Miethke, M. and Marahiel, M.A. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413-451. https://doi.org/10.1128/MMBR.00012-07
  22. Mitscher, L.A., Hogberg, T., Drake, S.D., Burgstahler, A.W., Jackson, M., Lee, B., Sheldon, R.I., Gracey, H.E., Kohl, W., and Theriault, R.J. 1984. Isolation and structural determination of siderochelin C, a fermentation product of an unusual Actinomycetes sp. J. Antibiot. (Tokyo) 37, 1260-1263. https://doi.org/10.7164/antibiotics.37.1260
  23. Okuyama, D., Nakamura, H., Naganawa, H., Takita, T., Umezawa, H., and Iitaka, Y. 1982. Isolation, racemization and absolute configuration of siderochelin. J. Antibiot. (Tokyo) 35, 1240-1242. https://doi.org/10.7164/antibiotics.35.1240
  24. Procopio, R.E., Silva, I.R., Martins, M.K., Azevedo, J.L., and Araujo, J.M. 2012. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 16, 466-471. https://doi.org/10.1016/j.bjid.2012.08.014
  25. Saitou, N. and Nei, M. 1987. The neighbour-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  26. Sakoulas, G. and Moellering, R.C. Jr. 2008. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin. Infect. Dis. 46, 360-367. https://doi.org/10.1086/533592
  27. Sensi, P., Greco, A.M., and Ballotta, R. 1959. Rifomycin I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot. Annu. 7, 262-270.
  28. Shiring, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313-340. https://doi.org/10.1099/00207713-16-3-313
  29. Tajima, F. and Nei, M. 1984. Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1, 269-285.
  30. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4, molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. https://doi.org/10.1093/molbev/msm092
  31. Thompson, M.G., Corey, B.W., Si, Y., Craft, D.W., and Zurawski, D.V. 2012. Antimicrobial activities of iron chelators against common nosocomial pathogens. Antimicrob. Agents Chemother. 56, 5419-5421. https://doi.org/10.1128/AAC.01197-12
  32. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  33. Tiwari, K. and, Gupta, R.K. 2012. Rare actinomycetes, a potential storehouse for novel antibiotics. Crit. Rev. Biotechnol. 32, 108-132. https://doi.org/10.3109/07388551.2011.562482
  34. Tseng, M., Yang, S.F., Li, W.J., and Jiang, C.L. 2006. Amycolatopsis taiwanensis sp. nov., from soil. Int. J. Syst. Evol. Microbiol. 56, 1811-1815. https://doi.org/10.1099/ijs.0.64149-0
  35. Waksman, S.A. and Henrici, A.T. 1943. The nomenclature and classification of the Actinomycetes. J. Bacteriol. 46, 337-341.
  36. Wayne, L.G., Brenner, D.J., Colwell, R.R., and Truper, H.G. 1987. Report of the Ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463-464. https://doi.org/10.1099/00207713-37-4-463
  37. Wink, J.M., Kroppenstedt, R.M., Ganguli, B.N., Nadkarni, S.R., Schumann, P., Seibert, G., and Stackebrandt, E. 2003. Three new antibiotic producing species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of Amycolatopsis keratiniphila subsp. Keratiniphila subsp. nov. and A. keratiniphila subsp. Nogabecina subsp. nov. Syst. Appl. Microbiol. 26, 38-46. https://doi.org/10.1078/072320203322337290

Cited by

  1. Study on Multi Drug Resistant Opportunistic Pathogens Obtained from Clinical Settings of Tamil Nadu for Developing Novel Alternative Therapeutics vol.13, pp.3, 2016, https://doi.org/10.22207/jpam.13.3.57
  2. Study on Multi Drug Resistant Opportunistic Pathogens Obtained from Clinical Settings of Tamil Nadu for Developing Novel Alternative Therapeutics vol.13, pp.3, 2016, https://doi.org/10.22207/jpam.13.3.57