DOI QR코드

DOI QR Code

RAW264.7 Cell Activating Glucomannans Extracted from Rhizome of Polygonatum sibiricum

  • Yelithao, Khamphone (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Surayot, Utoomporn (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Lee, Ju Hun (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • You, SangGuan (Department of Marine Food Science and Technology, Gangneung-Wonju National University)
  • Received : 2016.05.31
  • Accepted : 2016.08.21
  • Published : 2016.09.30

Abstract

Water-soluble polysaccharides isolated from the rhizome of Polygonatum sibiricum and fractionated using ionexchange chromatography were investigated to determine their structure and immunostimulating activity. Crude and fractions ($F_1$ and $F_2$) consisted of carbohydrates (85.1~88.3%) with proteins (4.51~11.9%) and uronic acid (1.79~7.47%), and included different levels of mannose (62.3~76.3%), glucose (15.2~20.3%), galactose (4.35~15.3%), and arabinose (4.00~7.65%). The crude contained two peaks with molecular weights (Mw) of $151{\times}10^3$ and $31.8{\times}10^3$, but $F_1$ and $F_2$ exhibited one major peak with Mw of $103{\times}10^3$ and $628{\times}10^3$, respectively. Little immunostimulatory activity was observed by the crude; however, $F_1$ and $F_2$ significantly activated RAW264.7 cells to release nitric oxide and various cytokines, suggesting they were potent immunostimulators. The backbone of the most immunostimulating fraction ($F_1$) was ($1{\rightarrow}4$)-manno- and ($1{\rightarrow}4$)-gluco-pyranosyl residues with galactose and glucose attached to O-6 of manno-pyranoside.

Keywords

References

  1. Shu XS, Lv JH, Tao J, Li GM, Li HD, Ma N. 2009. Antihyperglycemic effects of total flavonoids from Polygonatum odoratum in STZ and alloxan-induced diabetic rats. J Ethnopharmacol 124: 539-543. https://doi.org/10.1016/j.jep.2009.05.006
  2. Tomshich SV, Komandrova NA, Kalmykova EN, Prokof'eva NG, Momontova VA, Gorovoi PG, Ovodov YS. 1997. Biologically active polysaccharides from medicinal plants of the Far East. Chem Nat Compd 33: 146-149. https://doi.org/10.1007/BF02291530
  3. Liu L, Dong Q, Dong XT, Fang JN, Ding K. 2007. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum. Carbohydr Polym 70: 304-309. https://doi.org/10.1016/j.carbpol.2007.04.012
  4. Bai H, Li W, Zhao H, Anzai Y, Li H, Guo H, Kato F, Koike K. 2014. Isolation and structural elucidation of novel cholestane glycosides and spirostane saponins from Polygonatum odoratum. Steroids 80: 7-14. https://doi.org/10.1016/j.steroids.2013.11.013
  5. Dong W, Shi HB, Ma H, Miao YB, Liu TJ, Wang W. 2010. Homoisoflavanones from Polygonatum odoratum rhizomes inhibit advanced glycation end product formation. Arch Pharm Res 33: 669-674. https://doi.org/10.1007/s12272-010-0504-y
  6. Yang XG, Chen SB, Chen SL, Yang DJ, Liu TS. 2005. Studies on TLC fingerprint of flavonoids in rhizome of Polygonatum odoratum. Zhongguo Zhong Yao Za Zhi 30: 104-106.
  7. Zhang F, Zhang J, Wang L, Mao D. 2008. Effects of Polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia. Neural Regener Res 3: 33-36.
  8. Liu X, Zhang M, Guo K, Jia A, Shi Y, Gao G, Sun Z, Liu C. 2015. Cellulase-assisted extraction, characterization, and bioactivity of polysaccharides from Polygonatum odoratum. Int J Biol Macromol 75: 258-265. https://doi.org/10.1016/j.ijbiomac.2015.01.040
  9. Zhang H, Cao Y, Chen L, Wang J, Tian Q, Wang N, Liu Z, Li J, Wang N, Wang X, Sun P, Wang L. 2015. A polysaccharide from Polygonatum sibiricum attenuates amyloid-${\beta}$-induced neurotoxicity in PC12 cells. Carbohydr Polym 117: 879-886. https://doi.org/10.1016/j.carbpol.2014.10.034
  10. Baek SH, Lee JG, Park SY, Piao XL, Kim HY, Bae ON, Park JH. 2012. Gas chromatographic determination of azetidine-2-carboxylic acid in rhizomes of Polygonatum sibiricum and Polygonatum odoratum. J Food Compos Anal 25: 137-141. https://doi.org/10.1016/j.jfca.2011.09.005
  11. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  12. Filisetti-Cozzi TMCC, Carpita NC. 1991. Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197: 157-162. https://doi.org/10.1016/0003-2697(91)90372-Z
  13. Cao RA, Lee Y, You SG. 2014. Water soluble sulfated-fucans with immune-enhancing properties from Ecklonia cava. Int J Biol Macromol 67: 303-311. https://doi.org/10.1016/j.ijbiomac.2014.03.019
  14. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [$^{15}N$] nitrate in biological fluids. Anal Biochem 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  15. Surayot U, Wang J, Lee JH, Kanongnuch C, Peerapornpisal Y, You SG. 2015. Characterization and immunomodulatory activities of polysaccharides from Spirogyra neglecta (Hassall) Kutzing. Biosci Biotechnol Biochem 79: 1644-1653. https://doi.org/10.1080/09168451.2015.1043119
  16. Ciucanu I, Kerek F. 1984. A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131: 209-217. https://doi.org/10.1016/0008-6215(84)85242-8
  17. Jiang Q, Lv Y, Dai W, Miao X, Zhong D. 2013. Extraction and bioactivity of polygonatum polysaccharides. Int J Biol Macromol 54: 131-135. https://doi.org/10.1016/j.ijbiomac.2012.12.010
  18. Jia X, Zhang C, Qiu J, Wang L, Bao J, Wang K, Zhang Y, Chen M, Wan J, Su H, Han J, He C. 2015. Purification, structural characterization and anticancer activity of the novel polysaccharides from Rhynchosia minima root. Carbohydr Polym 132: 67-71. https://doi.org/10.1016/j.carbpol.2015.05.059
  19. Zhang L, Zhang W, Wang Q, Wang D, Dong D, Mu H, Ye XS, Duan J. 2015. Purification, antioxidant and immunological activities of polysaccharides from Actinidia Chinensis roots. Int J Biol Macromol 72: 975-983. https://doi.org/10.1016/j.ijbiomac.2014.09.056
  20. Zhang L, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Ananthan R, Longvah T. 2012. Antioxidant and immunomodulatory activities of polysaccharides from the roots of Sanguisorba officinalis. Int J Biol Macromol 51: 1057-1062. https://doi.org/10.1016/j.ijbiomac.2012.08.019
  21. Niu Y, Wang H, Xie Z, Whent M, Gao X, Zhang X, Zou S, Yao W, Yu L. 2011. Structural analysis and bioactivity of a polysaccharide from the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus (Bge.) Hsiao. Food Chem 128: 620-626. https://doi.org/10.1016/j.foodchem.2011.03.055
  22. Cai W, Xu H, Xie L, Sun J, Sun T, Wu X, Fu Q. 2016. Purification, characterization and in vitro anticoagulant activity of polysaccharides from Gentiana scabra Bunge roots. Carbohydr Polym 140: 308-313. https://doi.org/10.1016/j.carbpol.2015.12.054
  23. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G. 2005. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142: 481-489.
  24. Wang J, Zhang Q, Zhang Z, Li Z. 2008. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int J Biol Macromol 42: 127-132. https://doi.org/10.1016/j.ijbiomac.2007.10.003
  25. Schepetkin IA, Xie G, Kirpotina LN, Klein RA, Jutila MA, Quinn MT. 2008. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha. Int Immunopharmacol 8: 1455-1466. https://doi.org/10.1016/j.intimp.2008.06.003
  26. Sun H, Zhang J, Chen F, Chen X, Zhou Z, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr Polym 121: 388-402. https://doi.org/10.1016/j.carbpol.2014.12.023
  27. Jiao L, Li X, Li T, Jiang P, Zhang L, Wu M, Zhang L. 2009. Characterization and anti-tumor activity of alkali-extracted polysaccharide from Enteromorpha intestinalis. Int Immunopharmacol 9: 324-329. https://doi.org/10.1016/j.intimp.2008.12.010
  28. Choi J, Jung HJ, Lee KT, Park HJ. 2005. Antinociceptive and anti-inflammatory effects of the saponin and sapogenins obtained from the stem of Akebia quinata. J Med Food 8: 78-85. https://doi.org/10.1089/jmf.2005.8.78
  29. Xu HS, Wu YW, Xu SF, Sun HX, Chen FY, Yao L. 2009. Antitumor and immunomodulatory activity of polysaccharides from the roots of Actinidia eriantha. J Ethnopharmacol 125: 310-317. https://doi.org/10.1016/j.jep.2009.06.015
  30. Kiyohara H, Matsuzaki T, Yamada H. 2013. Intestinal Peyer's patch-immunomodulating glucomannans from rhizomes of Anemarrhena asphodeloides Bunge. Phytochemistry 96: 337-346. https://doi.org/10.1016/j.phytochem.2013.09.013
  31. Mandal EK, Maity K, Maity S, Gantait SK, Behera B, Maiti TK, Sikdar SR, Islam SS. 2012. Chemical analysis of an immunostimulating ($1{\rightarrow}4$), ($1{\rightarrow}6$)-branched glucan from an edible mushroom, Calocybe indica. Carbohydr Res 347: 172-177. https://doi.org/10.1016/j.carres.2011.10.040
  32. Shibata N, Suzuki A, Kobayashi H, Okawa Y. 2007. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem J 404: 365-372. https://doi.org/10.1042/BJ20070081
  33. Hannuksela T, Herve du Penhoat C. 2004. NMR structural determination of dissolved O-acetylated galactoglucomannan isolated from spruce thermomechanical pulp. Carbohydr Res 339: 301-312. https://doi.org/10.1016/j.carres.2003.10.025
  34. Agrawal PK. 1992. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31: 3307-3330. https://doi.org/10.1016/0031-9422(92)83678-R
  35. Maity KK, Patra S, Dey B, Bhunia SK, Mandal S, Das D, Majumdar DK, Maiti S, Maiti TK, Islam SS. 2011. A heteropolysaccharide from aqueous extract of an edible mushroom, Pleurotus ostreatus cultivar: structural and biological studies. Carbohydr Res 346: 366-372. https://doi.org/10.1016/j.carres.2010.10.026
  36. Popov SV, Ovodova RG, Golovchenko VV, Khramova DS, Markov PA, Smirnov VV, Shashkov AS, Ovodov YS. 2014. Pectic polysaccharides of the fresh plum Prunus domestica L. isolated with a simulated gastric fluid and their anti-inflammatory and antioxidant activities. Food Chem 143: 106-113. https://doi.org/10.1016/j.foodchem.2013.07.049
  37. Barbakadze VV, Kemertelidze EP, Dekanosidze GE, Usov AI. 1993. Structure of a glucomannan from rhizomes of Polygonatum glaberrimum C. Koch (Liliaceae). Bioorg Khim 19: 805-810.
  38. Rakhmanberdyeva RK, Rakhimov DA, Kondratenko ES. 1982. Polysaccharides of Polygonatum. V. Isolation and characterization of the glucomannans of P. polyanthemum. Chem Nat Compd 18: 363-364. https://doi.org/10.1007/BF00580469
  39. Rakhimov DA, Rakhmanberdyeva RK, Nikonovich GV. 1985. Polysaccharides of Polygonatum. VI. A study of the structure of a glucomannan from Polygonatum sewerzowii by $^{13}C$ NMR spectroscopy, electron microscopy, and x-radiography. Chem Nat Compd 21: 700-703. https://doi.org/10.1007/BF00576199

Cited by

  1. pp.1477-2213, 2018, https://doi.org/10.1080/10286020.2018.1478815
  2. A Review: The Bioactivities and Pharmacological Applications of Polygonatum sibiricum polysaccharides vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051170
  3. Protective Effect of Polygonatum sibiricum Polysaccharides on Apoptosis, Inflammation, and Oxidative Stress in Nucleus Pulposus Cells of Rats with the Degeneration of the Intervertebral Disc vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/8925807
  4. The Cordyceps militaris-Derived Polysaccharide CM1 Alleviates Atherosclerosis in LDLR(-/-) Mice by Improving Hyperlipidemia vol.8, pp.None, 2021, https://doi.org/10.3389/fmolb.2021.783807
  5. Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products vol.13, pp.7, 2021, https://doi.org/10.3390/v13071257
  6. Effect of steaming process on the structural characteristics and antioxidant activities of polysaccharides from Polygonatum sibiricum rhizomes vol.38, pp.5, 2016, https://doi.org/10.1007/s10719-021-10013-z
  7. Transcriptomic responses to drought stress in Polygonatum kingianum tuber vol.21, pp.1, 2016, https://doi.org/10.1186/s12870-021-03297-8
  8. Recent advances in polysaccharides from edible and medicinal Polygonati rhizoma: From bench to market vol.195, pp.None, 2016, https://doi.org/10.1016/j.ijbiomac.2021.12.010