DOI QR코드

DOI QR Code

Supplementation of a Fermented Soybean Extract Reduces Body Mass and Prevents Obesity in High Fat Diet-Induced C57BL/6J Obese Mice

  • Received : 2016.06.17
  • Accepted : 2016.08.12
  • Published : 2016.09.30

Abstract

Obesity is a growing health problem that many countries face, mostly due to the consumption of a Westernized diet. In this present study we observed the effects of a soybean extract fermented by Bacillus subtilis MORI (BTD-1) containing 1-deoxynojirimycin against high fat diet-induced obesity. The results obtained from this study indicated that BTD-1 reduced body weight, regulated hepatic lipid content and adipose tissue, and also affected liver antioxidant enzymes and glucose metabolism. These results suggest that administration of BTD-1 affects obesity by inhibiting hyperglycemia and free radical-mediated stress; it also reduces lipid accumulation. Therefore, BTD-1 may be potentially useful for the prevention of obesity and its related secondary complications.

Keywords

References

  1. Miao H, Chen H, Zhang X, Yin L, Chen DQ, Cheng XL, Bai X, Wei F. 2014. Urinary metabolomics on the biochemical profiles in diet-induced hyperlipidemia rat using ultraperformance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry. J Anal Methods Chem 2014: 184162.
  2. Vinaixa M, Rodriguez MA, Rull A, Beltran R, Blade C, Brezmes J, Canellas N, Joven J, Correig X. 2010. Metabolomic assessment of the effect of dietary cholesterol in the progressive development of fatty liver disease. J Proteome Res 9: 2527-2538. https://doi.org/10.1021/pr901203w
  3. WHO. 2014. Global status report on noncommunicable diseases 2014. World Health Organization, Geneve, Switzerland. p 79-103.
  4. Mathers CD, Loncar D. 2006. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3: e442. https://doi.org/10.1371/journal.pmed.0030442
  5. Rao BK, Kesavulu MM, Giri R, Appa Rao C. 1999. Antidiabetic and hypolipidemic effects of Momordica cymbalaria Hook. fruit powder in alloxan-diabetic rats. J Ethnopharmacol 67: 103-109. https://doi.org/10.1016/S0378-8741(99)00004-5
  6. Chang CL, Chen YC, Chen HM, Yang NS, Yang WC. 2013. Natural cures for type 1 diabetes: a review of phytochemicals, biological actions, and clinical potential. Curr Med Chem 20: 899-907.
  7. Shapiro DJ, Nordstrom JL, Mitschelen JJ, Rodwell VW, Schimke RT. 1974. Micro assay for 3-hydroxy-3-methylglutaryl-CoA reductase in rat liver and in L-cell fibroblasts. Biochim Biophys Acta 370: 369-377. https://doi.org/10.1016/0005-2744(74)90098-9
  8. Evans RM, Barish GD, Wang YX. 2004. PPARs and the complex journey to obesity. Nat Med 10: 355-361. https://doi.org/10.1038/nm1025
  9. Velasquez MT, Bhathena SJ. 2007. Role of dietary soy protein in obesity. Int J Med Sci 4: 72-82.
  10. Lee YK, Park OJ. 2013. Soybean isoflavone genistein regulates apoptosis through NF-${\kappa}B$ dependent and independent pathways. Exp Toxicol Pathol 65: 1-6. https://doi.org/10.1016/j.etp.2011.05.001
  11. Roghani M, Vaez Mahdavi MR, Jalali-Nadoushan MR, Baluchnejadmojarad T, Naderi G, Roghani-Dehkordi F, Taghi Joghataei M, Kord M. 2013. Chronic administration of daidzein, a soybean isoflavone, improves endothelial dysfunction and attenuates oxidative stress in streptozotocin-induced diabetic rats. Phytother Res 27: 112-117. https://doi.org/10.1002/ptr.4699
  12. Naaz A, Yellayi S, Zakroczymski MA, Bunick D, Doerge DR, Lubahn DB, Helferich WG, Cooke PS. 2003. The soy isoflavone genistein decreases adipose deposition in mice. Endocrinology 144: 3315-3320. https://doi.org/10.1210/en.2003-0076
  13. Tsuduki T, Nakamura Y, Honma T, Nakagawa K, Kimura T, Ikeda I, Miyazawa T. 2009. Intake of 1-deoxynojirimycin suppresses lipid accumulation through activation of the ${\beta}$-oxidation system in rat liver. J Agric Food Chem 57: 11024-11029. https://doi.org/10.1021/jf903132r
  14. Ezure Y, Maruo S, Miyazaki K, Kawamata M. 1985. Moranoline (1-deoxynojirimycin) fermentation and its improvement. Agric Biol Chem 49: 1119-1125.
  15. Bischoff H. 1995. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med 18: 303-311.
  16. Inoue I, Shinoda Y, Nakano T, Sassa M, Goto S, Awata T, Komoda T, Katayama S. 2006. Acarbose ameliorates atherogenecity of low-density lipoprotein in patients with impaired glucose tolerance. Metabolism 55: 946-952. https://doi.org/10.1016/j.metabol.2006.03.002
  17. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. 2005. ${\alpha}$-Glucosidase inhibitors for patients with type 2 diabetes. Diabetes Care 28: 154-163. https://doi.org/10.2337/diacare.28.1.154
  18. Kim HB, Lee HS, Kim SJ, Yoo HJ, Hwang JS, Chen G, Youn HJ. 2007. Ethanol extract of fermented soybean, Chungkookjang, inhibits the apoptosis of mouse spleen, and thymus cells. J Microbiol 45: 256-261.
  19. Kojima Y, Kimura T, Nakagawa K, Asai A, Hasumi K, Oikawa S, Miyazawa T. 2010. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J Clin Biochem Nutr 47: 155-161. https://doi.org/10.3164/jcbn.10-53
  20. Lim KH, Han JH, Lee JY, Park YS, Cho YS, Kang KD, Yuk WJ, Hwang KY, Seong SI, Kim B, Kwon J, Kang CW, Kim JH. 2012. Assessment of antidiabetogenic potential of fermented soybean extracts in streptozotocin-induced diabetic rat. Food Chem Toxicol 50: 3941-3948. https://doi.org/10.1016/j.fct.2012.08.036
  21. Lin AH, Lee BH, Nichols BL, Quezada-Calvillo R, Rose DR, Naim HY, Hamaker BR. 2012. Starch source influences dietary glucose generation at the mucosal ${\alpha}$-glucosidase level. J Biol Chem 287: 36917-36921. https://doi.org/10.1074/jbc.M112.378331
  22. Nakanishi H, Onose S, Kitahara E, Chumchuen S, Takasaki M, Konishi H, Kanekatsu R. 2011. Effect of environmental conditions on the ${\alpha}$-glucosidase inhibitory activity of mulberry leaves. Biosci Biotechnol Biochem 75: 2293-2296. https://doi.org/10.1271/bbb.110407
  23. Andallu B, Varadacharyulu NC. 2007. Gluconeogenic substrates and hepatic gluconeogenic enzymes in streptozotocin-diabetic rats: effect of mulberry (Morus indica L.) leaves. J Med Food 10: 41-48. https://doi.org/10.1089/jmf.2005.034
  24. Kim JW, Kim SU, Lee HS, Kim I, Ahn MY, Ryu KS. 2003. Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J Chromatogr A 1002: 93-99. https://doi.org/10.1016/S0021-9673(03)00728-3
  25. Haffner SM, Miettinen H, Stern MP. 1997. The homeostasis model in the San Antonio Heart Study. Diabetes Care 20: 1087-1092. https://doi.org/10.2337/diacare.20.7.1087
  26. Nepokroeff CM, Lakshmanan MR, Porter JW. 1975. Fatty acid synthase from rat liver. Methods Enzymol 35: 37-44. https://doi.org/10.1016/0076-6879(75)35136-7
  27. Niehaus WG Jr, Samuelsson B. 1968. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6: 126-130. https://doi.org/10.1111/j.1432-1033.1968.tb00428.x
  28. Schmoll D, Walker KS, Alessi DR, Grempler R, Burchell A, Guo S, Walther R, Unterman TG. 2000. Regulation of glucose-6-phosphatase gene expression by protein kinase $B{\alpha}$ and the Forkhead transcription factor FKHR: evidence for insulin response unit-dependent and -independent effects of insulin on promoter activity. J Biol Chem 275: 36324-36333. https://doi.org/10.1074/jbc.M003616200
  29. Singab AN, El-Beshbishy HA, Yonekawa M, Nomura T, Fukai T. 2005. Hypoglycemic effect of Egyptian Morus alba root bark extract: effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J Ethnopharmacol 100: 333-338. https://doi.org/10.1016/j.jep.2005.03.013
  30. Asgary S, Naderi G, Sarrafzadegan N, Ghassemi N, Boshtam M, Rafie M, Arefian A. 1999. Anti-oxidant effect of flavonoids on hemoglobin glycosylation. Pharm Acta Helv 73: 223-226. https://doi.org/10.1016/S0031-6865(98)00025-9
  31. Liou W, Chang LY, Geuze HJ, Strous GJ, Crapo JD, Slot JW. 1993. Distribution of CuZn superoxide dismutase in rat liver. Free Radic Biol Med 14: 201-207. https://doi.org/10.1016/0891-5849(93)90011-I
  32. Madan K, Bhardwaj P, Thareja S, Gupta SD, Saraya A. 2006. Oxidant stress and antioxidant status among patients with nonalcoholic fatty liver disease (NAFLD). J Clin Gastroenterol 40: 930-935. https://doi.org/10.1097/01.mcg.0000212608.59090.08
  33. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T. 2003. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762-769. https://doi.org/10.1038/nature01705
  34. Juhan-Vague I, Alessi MC. 1997. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 78: 656-660.
  35. Hwang JW, Do HJ, Kim OY, Chung JH, Lee JY, Park YS, Hwang KY, Seong SI, Shin MJ. 2015. Fermented soy bean extract suppresses differentiation of 3T3-L1 preadipocytes and facilitates its glucose utilization. J Funct Foods 15: 516-524. https://doi.org/10.1016/j.jff.2015.04.002
  36. Foster JD, Pederson BA, Nordlie RC. 1997. Glucose-6-phosphatase structure, regulation, and function: an update. Proc Soc Exp Biol Med 215: 314-332. https://doi.org/10.3181/00379727-215-44142
  37. van de Werve G, Lange A, Newgard C, Mechin MC, Li Y, Berteloot A. 2000. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem 267: 1533-1549. https://doi.org/10.1046/j.1432-1327.2000.01160.x
  38. Bouche C, Serdy S, Kahn CR, Goldfine AB. 2004. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev 25: 807-830. https://doi.org/10.1210/er.2003-0026
  39. Klover PJ, Mooney RA. 2004. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 36: 753-758. https://doi.org/10.1016/j.biocel.2003.10.002

Cited by

  1. Anti-obesity Effects of Black Soybean Doenjang in C57BL/6 Mice vol.27, pp.12, 2016, https://doi.org/10.5352/jls.2017.27.12.1486
  2. Evaluation of Antiobesity Activity of Soybean Meal Products Fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in Rats Fed with High-Fat Diet vol.23, pp.6, 2016, https://doi.org/10.1089/jmf.2019.4643
  3. Gomisin A Alleviates Obesity by Regulating the Phenotypic Switch between White and Brown Adipocytes vol.49, pp.8, 2016, https://doi.org/10.1142/s0192415x21500919
  4. Improvement effect of cooked soybeans on HFD-deteriorated large intestinal health in rat model vol.64, pp.4, 2016, https://doi.org/10.3839/jabc.2021.052
  5. Current perspectives on the anti-inflammatory potential of fermented soy foods vol.152, pp.None, 2016, https://doi.org/10.1016/j.foodres.2021.110922