DOI QR코드

DOI QR Code

Positron Annihilation Study of Vacancy Type Defects in Ti, Si, and BaSrFBr:Eu

  • Received : 2016.07.27
  • Accepted : 2016.08.20
  • Published : 2016.09.30

Abstract

Coincidence Doppler broadening and positron lifetime methods in positron annihilation spectroscopy has been used to analyze defect structures in metal, semiconductor and polycrystal, respectively. The S parameter and the lifetime (${\tau}$) value show that the defects were strongly related with vacancies. A positive relationship existed between the scanning electron microscope (SEM) images and the positron annihilation spectroscopy (PAS). According to the SEM images and PAS results, measurements of the defects with PAS indicate that it was more affected by the defect than the purity.

Keywords

References

  1. S. Vyrynen, J. Risnen, P. Tikkanen, I. Kassamakov, and E. Tuominen, J. Appl. Phys. 106, 024908 (2009). https://doi.org/10.1063/1.3168436
  2. S. Dannefaer, P. Mascher, and D. Kerr, J. Appl. Phys. 73, 3740 (1993). https://doi.org/10.1063/1.352905
  3. M. Grtzel, Nature 414, 338 (2001). https://doi.org/10.1038/35104607
  4. M. mills and S. Le Hunte, J. Photobiol A 108, 1 (1997). https://doi.org/10.1016/S1010-6030(97)00118-4
  5. K. Koschnick, Th. Hangleiter, J. M. Spaeth, and R. S. Eachus, J. Phys. Condens. Matter 4, 3001 (1992). https://doi.org/10.1088/0953-8984/4/11/024
  6. Y. Amemiya and J. Miyahara, Nature (London) 336, 89 (1988). https://doi.org/10.1038/336089a0
  7. M. J. Puska and R. M. Nieminem, Rev. Mod. Phys. 66, 841 (1994). https://doi.org/10.1103/RevModPhys.66.841
  8. Kwon Hee Lee, Suk Hwan Bae, and Chong Yong Lee, J. Kor. Vacuum Soc., 22, 250 (2013). https://doi.org/10.5757/JKVS.2013.22.5.250
  9. A. Sachdeva, S. V. Chavan, A. Goswami, A. K. Tyagi, and P. K. Pujari, J. Solid State Chem. 178, 2062 (2005). https://doi.org/10.1016/j.jssc.2005.04.016
  10. C. Lim and W. F. Huang, SolidState, Commun. 87, 771 (1993). https://doi.org/10.1016/0038-1098(93)90411-F
  11. P. Sen, Nuclear, Instr. Meth. Phys. Res. A 314, 366 (1992). https://doi.org/10.1016/0168-9002(92)90980-I
  12. R. W. Siegel, Scripta Metallugica 14, 15 (1980). https://doi.org/10.1016/0036-9748(80)90117-9
  13. Th. Lagouri, Sp. Dedoussis, M. Chardalas, and A. Liolios, Phys. Lett. A 229, 259 (1997). https://doi.org/10.1016/S0375-9601(97)00123-0
  14. K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, M. F. Robbins, E. Bonderup, and J. Golovchenko, Phys. Rev. Lett. 38, 241 (1977). https://doi.org/10.1103/PhysRevLett.38.241
  15. K. G. Lynn, J. E. Dickman, W. L. Brown, M. F. Robbins, and E. Bonderup, Phys. Rev B 20, 3566 (1979). https://doi.org/10.1103/PhysRevB.20.3566
  16. Chong Yong Lee, J. Kor. Vacuum Soc., 22, 341 (2013). https://doi.org/10.5757/JKVS.2013.22.6.341
  17. P. Asoka-Kumar, M. Alatalo, V. J. Ghosh, A. C. Kruseman, B. Nielsen, and K. G. Lynn, Phys. Rev Lett. 77, 2097 (1996). https://doi.org/10.1103/PhysRevLett.77.2097
  18. K. Saarinen, J. Nissil, H. Kauppinen, M. Hakala, M. J. Puska, P. Hautojrvi, and C. Corbel, Phys. Rev Lett. 82, 1883 (1999). https://doi.org/10.1103/PhysRevLett.82.1883
  19. R. S. Brusa, W. Deng, Karwasz, and A. Zecca, Nucl. Instr. And Meth. B 194, 519 (2002). https://doi.org/10.1016/S0168-583X(02)00953-9
  20. A. Sachdeva, S. V. Chavan, A. Goswami, A. K. Tyagi, and P. K. Pujari, J. Solid State Chem. 178, 2062 (2005). https://doi.org/10.1016/j.jssc.2005.04.016
  21. T. K. Gupta and W. G. Carlson, J. Mater. Sci., 20, 3487 (1987).
  22. H. OHkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M. Kiritani, Mater. Sci. Eng. A350, 95 (2003). https://doi.org/10.1016/S0921-5093(02)00705-0
  23. A. J. Hill, I. M. Katz, P. L. Jones, and R. P. Pagano, Physica C 176, 64 (1991). https://doi.org/10.1016/0921-4534(91)90696-V