DOI QR코드

DOI QR Code

IEEE 802.15.4 Network의 전송효율 향상을 위한 Enhanced Semgentized Clear Channel Assessment 기법

Enhanced Segmentized Clear Channel Assessment Method for IEEE 802.15.4 Network

  • Son, Kyou Jung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Chang, Tae Gyu (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 투고 : 2016.09.05
  • 심사 : 2016.09.27
  • 발행 : 2016.09.30

초록

본 논문에서는 Enhanced Segmentized Clear Channel Assessment(ESCCA)를 수행하여 디바이스의 데이터 전송 기회를 증가시킴으로써 전체 네트워크의 전송효율을 향상시킬 수 있는 기법을 제시하였다. 본 논문에서 제시한 기법은 IEEE 802.15.4 에서 채널 상태탐지를 위해 수행되는 Energy detection based CCA 의 기간을 반으로 나누고, 채널 상태에 따라 CCA 를 추가적으로 수행함으로써 디바이스의 패킷 전송기회를 증가시켜 전체 네트워크의 전송 효율을 향상시킨다. 제시한 기법의 타당성을 확인하기 위하여 star topology 네트워크에서 디바이스들이 코디네이터로 패킷을 전송하는 환경에 본 논문에서 제시한 기법을 적용하여 IEEE 802.15.4 의 CCA 및 Segmentized CCA 기법을 적용한 결과와 성능을 비교하였다. 실험결과, throughput은 IEEE 802.15.4 CCA에 비해 최대 약 10kbps, 평균 CCA 횟수는 최대 약 15회 감소하였음을 확인하였다.

This paper proposed Enhanced Segmentized Clear Channel Assesment(ESCCA) for the IEEE 802.15.4 networks. This method divides original CCA into two groups to check precise channel status and perform additional CCA to increase throughput performance. Through the proposed method, the device can access the channel more often, so the transmission efficiency of the IEEE 802.15.4 network improves. To confirm the feasibility and usability of the proposed method, computer simulation has been performed. In the simulation, a star topology with one coordinator and a lot of devices is considered and the traffic flows are all one way, with the communication directed to the coordinator. Simulation results_ show the proposed method is improving maximum 10 kbps of throughput and decreasing maximum 15 of the average number of total CCA than IEEE 802.15.4 CCA method.

키워드

참고문헌

  1. IEEE-TG15.4, Part15.4:Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE Standard for Information Technology. 2011.
  2. J. B. Lee and S. S. Lee, "Implementation of 868/915 MHz LR-WPAN Transceiver for IoT Systems," Journal of IKEEE, vol.20, no.1, pp.107-110, March 2016. https://doi.org/10.7471/ikeee.2016.20.1.107
  3. J. H. Lee and S. H. Lee, " A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement," Journal of IKEEE, vol.18, no.4, pp.552-558, December 2014. https://doi.org/10.7471/ikeee.2014.18.4.552
  4. W. Kim, "Short Clear Channel Assessment in Slotted IEEE 802.15.4 Networks," Wireless Personal Communications, vol.71, no.1, pp.735-744, July 2013. https://doi.org/10.1007/s11277-012-0841-x
  5. B. H. Lee, R. L. Lai, H. J. Wu and C. M. Wong, "Study on Additional Carrier Sensing for IEEE 802.15.4 Wireless Sensor Networks," Sensors, vol.10, no.7, pp.6275-6289, June 2010. https://doi.org/10.3390/s100706275
  6. T. H. Kim and S. H. Choi, "Priority-based delay mitigation for event-monitoring IEEE 802.15.4 LR-WPANs, " IEEE Communications Letters, vol. 10, no. 3, pp. 213-215, March 2006. https://doi.org/10.1109/LCOMM.2006.1603388
  7. T. S. Jung and S. W. Kim, "Minimizing the power consumption of ZigBee RF4CE Certified Platform," Journal of IKEEE, vol.15, no.4, pp.287-292, December 2011.
  8. K. J. Son, S. H. Hong, S. P. Moon, T. G. Chang and H. J. Cho, "Segmentized Clear Channel Assessment for IEEE 802.15.4 Networks," Sensors, vol.16, no. 6, June 2016.