DOI QR코드

DOI QR Code

Effect of Boron Content on Atomic Structure of Boron-bearing Multicomponent Oxide Glasses: A View from Solid-state NMR

비정질 소듐 보레이트와 붕소를 함유한 다성분계 규산염 용융체의 붕소의 함량에 따른 원자 구조에 대한 고상 핵자기 공명 분광분석 연구

  • Lee, A Chim (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 이아침 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2016.09.06
  • Accepted : 2016.09.26
  • Published : 2016.09.30

Abstract

Understanding the effect of boron content on atomic structures of boron-bearing multicomponent silicate melts is essential to reveal the atomistic origins of diverse geochemical processes involving silica-rich magmas, such as explosive volcanic eruption. The detailed atomic environments around B and Al in boron-bearing complex aluminosilicate glasses yield atomistic insights into reactivity of nuclear waste glasses in contact with aqueous solutions. We report experimental results on the effect of boron content on the atomic structures of sodium borate glasses and boron-bearing multicomponent silicate melts [malinkoite ($NaBSiO_4$)-nepheline ($NaAlSiO_4$) pseudo-binary glasses] using the high-resolution solid-state NMR ($^{11}B$ and $^{27}Al$). The $^{11}B$ MAS NMR spectra of sodium borate glasses show that three-coodrinated boron ($^{[3]}B$) increases with increasing $B_2O_3$ content. While the spectra imply that the fraction of non-ring species decreases with decreasing boron content, peak position of the species is expected to vary with Na content. Therefore, the quantitative estimation of the fractions of the ring/non-ring species remains to be explored. The $^{11}B$ MAS NMR spectra of the glasses in the malinkoite-nepheline join show that four-coordinated boron ($^{[4]}B$) increases as $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$] increases while $^{[3]}B$ decreases. $^{27}Al$ MAS NMR spectra of the multicomponent glasses confirm that four-coordinated aluminum ($^{[4]}Al$) is dominant. It is also observed that a drastic decrease in the peak widths (full-width at half-maximum, FWHM) of $^{[4]}Al$ with an addition of boron ($X_{Ma}=0.25$) in nepheline glasses. This indicates a decrease in structural and topological disorder around $^{[4]}Al$ in the glasses with increasing boron content. The quantitative atomic environments around boron of both binary and multicomponent glasses were estimated from the simulation results of $^{11}B$ MAS NMR spectra, revealing complex-nonlinear variation of boron topology with varying composition. The current results can be potentially used to account for the structural origins of the change in macroscopic properties of boron-bearing oxide melts with varying boron content.

붕소가 포함된 다성분계 규산염 용융체의 원자 구조를 규명하는 것은 화산의 분화 양상을 포함한 다양한 지구화학적 과정의 원자 단위 기작을 밝히는데 중요하다. 붕소를 포함한 소듐 알루미노규산염 용융체의 붕소 및 알루미늄 주위의 원자 환경에 관한 자세한 정보는 수용액과 핵폐기물 유리(nuclear waste glasses)의 반응도(reactivity)에 대한 미시적인 설명을 제공한다. 본 연구에서는 붕소가 포함된 비정질 물질의 원자 구조 규명에 가장 적합한 고상 핵자기 공명 분광분석(solid-state nuclear magnetic resonance, solid-state NMR)을 이용하여 붕소의 함량이 비정질 소듐 보레이트($Na_2O-B_2O_3$)와 붕소를 포함한 다성분계 규산염 용융체[말린코아이트(malinkoite, $NaBSiO_4$)와 네펠린(nepheline, $NaAlSiO_4$)의 유사 이원계]의 원자 구조에 미치는 영향을 규명하였다. 비정질 소듐 보레이트의 $^{11}B$ MAS NMR 스펙트럼을 통해 붕소의 함량이 증가함에 따라 배위수가 3인 붕소($^{[3]}B$)가 증가한다는 것이 확인되었다. 비정질 말린코아이트와 네펠린의 유사 이원계의 $^{11}B$ MAS NMR 스펙트럼을 통해 $X_{Ma}$ [$=NaBSiO_4/(NaBSiO_4+NaAlSiO_4)$]가 증가함에 따라 배위수가 4인 붕소($^{[4]}B$)는 증가하는 반면 $^{[3]}B$는 감소하는 것이 관찰되었다. 다성분계 용융체의 $^{27}Al$ MAS NMR 실험 결과, 모든 조성의 용융체에서 배위수가 4인 알루미늄($^{[4]}Al$) 피크가 지배적으로 나타났다. 또한 네펠린 용융체에 붕소가 첨가되었을때 $^{[4]}Al$ 피크의 폭이 크게 감소하였고, 이는 붕소의 첨가가 네펠린 용융체 내의 알루미늄 주위의 구조적 위상학적 무질서도를 감소시킨다는 것을 지시한다. 붕소를 포함한 이원계 및 다성분계 비정질 물질의 $^{11}B$ MAS NMR 스펙트럼으로부터 시뮬레이션을 하여 붕소의 함량에 따른 붕소 원자 환경의 상대적인 존재비를 정량적으로 분석하였고, 이 결과는 붕소가 포함된 비정질 물질의 거시적 성질 변화에 대한 미시적 기작의 근원을 제시할 가능성을 보여준다.

Keywords

References

  1. Bartels, A., Behrens, H., Holtz, F., Schmidt, B.C., Fechtelkord, M., Knipping, J., Crede, L., Baasner, A., and Pukallus, N. (2013) The effect of fluorine, boron and phosphorus on the viscosity of pegmatite forming melts. Chemical Geology, 346, 184-198. https://doi.org/10.1016/j.chemgeo.2012.09.024
  2. Bray, P.J. (1985) Nuclear magnetic resonance studies of glass structure. Journal of Non-Crystalline Solids, 73, 19-45. https://doi.org/10.1016/0022-3093(85)90335-7
  3. Dingwell, D., Knoche, R., Webb, S., and Pichavant, M. (1992) The effect of $B_2O_3$ on the viscosity of haplogranitic liquids. American Mineralogist, 77, 457-461.
  4. Du, L.-S. and Stebbins, J.F. (2003a) Nature of silicon-boron mixing in sodium borosilicate glasses: a high-resolution $^{11}B$ and $^{17}O$ NMR study. The Journal of Physical Chemistry B, 107, 10063-10076.
  5. Du, L.-S. and Stebbins, J.F. (2003b) Site preference and Si/B mixing in mixed-alkali borosilicate glasses: a high-resolution $^{11}B$ and $^{17}O$ NMR study. Chemistry of materials, 15, 3913-3921. https://doi.org/10.1021/cm034427r
  6. Ellison, A.J. and Navrotsky, A. (1989) Thermochemistry and structure of model waste glass compositions, MRS Proceedings. Cambridge Univ Press.
  7. Ferlat, G., Charpentier, T., Seitsonen, A.P., Takada, A., Lazzeri, M., Cormier, L., Calas, G., and Mauri, F. (2008) Boroxol rings in liquid and vitreous $B_2O_3$ from first principles. Physical review letters, 101, 065504. https://doi.org/10.1103/PhysRevLett.101.065504
  8. Frydman, L. and Harwood, J.S. (1995) Isotropic spectra of half-integer quadrupolar spins from bidimensional magic-angle spinning NMR. Journal of the American Chemical Society, 117, 5367-5368. https://doi.org/10.1021/ja00124a023
  9. Hwang, S.J., Fernandez, C., Amoureux, J.P., Cho, J., Martin, S.W., and Pruski, M. (1997) Quantitative study of the short range order in $B_2O_3$ and $B_2S_3$ by MAS and two-dimensional triple-quantum MAS $^{11}B$ NMR. Solid State Nuclear Magnetic Resonance, 8, 109-121. https://doi.org/10.1016/S0926-2040(96)01280-5
  10. Jellison, G.E. and Bray, P.J. (1978) A structural interpretation of B-10 and B-11 NMR spectra in sodium borate glasses. Journal of Non-Crystalline Solids, 29, 187-206. https://doi.org/10.1016/0022-3093(78)90113-8
  11. Kilymis, D., Delaye, J.-M., and Ispas, S. (2016) Nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass: insights from molecular dynamics simulations. The Journal of Chemical Physics, 145, 044505. https://doi.org/10.1063/1.4959118
  12. Konijnendijk, W.L. and Stevels, J.M. (1975) The structure of borate glasses studied by Raman scattering. Journal of Non-Crystalline Solids, 18, 307-331. https://doi.org/10.1016/0022-3093(75)90137-4
  13. Lee, A.C. and Lee, S.K. Atomistic origins of the transport properteis of multicomponent borosilicate glasses: Insights from high-resolution solid-state NMR. In preparation.
  14. Lee, S.K., Eng, P.J., Mao, H.-K., Meng, Y., Newville, M., Hu, M.Y., and Shu, J. (2005a) Probing of bonding changes in $B_2O_3$ glasses at high pressure with inelastic X-ray scattering. Nature Materials, 4, 851-854. https://doi.org/10.1038/nmat1511
  15. Lee, S.K., Kim, H.N., Lee, B.H., Kim, H.-I., and Kim, E.J. (2009) Nature of chemical and topological disorder in borogermanate glasses: insights from B-11 and O-17 solid-State NMR and quantum chemical calculations. The Journal of Physical Chemistry B, 114, 412-420.
  16. Lee, S.K., Mibe, K., Fei, Y., Cody, G.D., and Mysen, B.O. (2005b) Structure of $B_2O_3$ glass at high pressure: a B-11 solid-state NMR study. Physical review letters, 94, 165507. https://doi.org/10.1103/PhysRevLett.94.165507
  17. Lee, S.K., Musgrave, C.B., Zhao, P., and Stebbins, J.F. (2001) Topological disorder and reactivity of borosilicate glasses: quantum chemical calculations and $^{17}O$ and $^{11}B$ NMR study. The Journal of Physical Chemistry B, 105, 12583-12595. https://doi.org/10.1021/jp012119f
  18. Lee, S.K. and Stebbins, J.F. (1999) The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist, 84, 937-945. https://doi.org/10.2138/am-1999-5-630
  19. Lee, S.K. and Stebbins, J.F. (2002) Extent of intermixing among framework units in silicate glasses and melts. Geochimica et Cosmochimica Acta, 66, 303-309. https://doi.org/10.1016/S0016-7037(01)00775-X
  20. Levitt, M.H. (2001) Spin dynamics: basics of nuclear magnetic resonance. John Wiley & Sons.
  21. Lide, D.R. (2008) CRC Handbook of Chemistry and Physics, 88th ed. Journal of the American Chemical Society, 130, 382-382.
  22. Mackenzie, K.J. and Smith, M.E. (2002) Multinuclear solid-state nuclear magnetic resonance of inorganic materials. Elsevier.
  23. Morgan, G.B. and London, D. (1989) Experimental reactions of amphibolite with boron-bearing aqueous fluids at 200 MPa: implications for tourmaline stability and partial melting in mafic rocks. Contributions to Mineralogy and Petrology, 102, 281-297. https://doi.org/10.1007/BF00373721
  24. Palme, H. and O'Neill, H.S.C. (2003) Cosmochemical estimates of mantle composition. Treatise on geochemistry, 2, 1-38.
  25. Park, S.Y. and Lee, S.K. (2009) Probing Atomic Structure of Quarternary Aluminosilicate Glasses using Solid-state NMR. Journal of the Mineralogical Society of Korea, 22, 343-352.
  26. Park, S.Y. and Lee, S.K. (2014) High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: implications for structure of andesitic melts. Geochimica et Cosmochimica Acta, 147, 26-42. https://doi.org/10.1016/j.gca.2014.10.019
  27. Park, S.Y. and Lee, S.K. (2015) A Solid-state 27 Al MAS and 3QMAS NMR Study of Basaltic and Phonolitic Silicate Glasses. Journal of the Mineralogical Society of Korea, 28, 61-69. https://doi.org/10.9727/jmsk.2015.28.1.61
  28. Pichavant, M. (1983) Melt-fluid interaction deduced from studies of silicate-$B_2O_3-H_2O$ systems at 1 kbar. Bulletin de Mineralogie, 106, 201-211.
  29. Pierce, E.M., Reed, L.R., Shaw, W.J., McGrail, B.P., Icenhower, J.P., Windisch, C.F., Cordova, E.A., and Broady, J. (2010) Experimental determination of the effect of the ratio of B/Al on glass dissolution along the nepheline ($NaAlSiO_4$)-malinkoite ($NaBSiO_4$) join. Geochimica et Cosmochimica Acta, 74, 2634-2654. https://doi.org/10.1016/j.gca.2009.09.006
  30. Sen, S., Xu, Z. and Stebbins, J.F. (1998) Temperature dependent structural changes in borate, borosilicate and boroaluminate liquids: high-resolution $^{11}B$, $^{29}Si$ and $^{27}Al$ NMR studies. Journal of Non-Crystalline Solids, 226, 29-40. https://doi.org/10.1016/S0022-3093(97)00491-2
  31. Turner, G.L., Smith, K.A., Kirkpatrick, R.J., and Oldfield, E. (1986) Boron-11 nuclear magnetic resonance spectroscopic study of borate and borosilicate minerals and a borosilicate glass. Journal of Magnetic Resonance (1969) 67, 544-550. https://doi.org/10.1016/0022-2364(86)90391-4
  32. Youngman, R.E., Haubrich, S.T., Zwanziger, J.W., Janicke, M.T., and Chmelka, B.F. (1995) Short-and intermediate-range structural ordering in glassy boron oxide. Science, 269, 1416. https://doi.org/10.1126/science.269.5229.1416
  33. Youngman, R.E. and Zwanziger, J.W. (1996) Network modification in potassium borate glasses: structural studies with NMR and Raman spectroscopies. The Journal of Physical Chemistry, 100, 16720-16728. https://doi.org/10.1021/jp961439+
  34. Zhong, J. and Bray, P.J. (1989) Change in boron coordination in alkali borate glasses, and mixed alkali effects, as elucidated by NMR. Journal of Non-Crystalline Solids, 111, 67-76. https://doi.org/10.1016/0022-3093(89)90425-0

Cited by

  1. Network polymerization and cation coordination environments in boron-bearing rhyolitic melts: Insights from 17O, 11B, and 27Al solid-state NMR of sodium aluminoborosil vol.268, pp.None, 2016, https://doi.org/10.1016/j.gca.2019.10.010