DOI QR코드

DOI QR Code

Study of Heat and Acid Treatment for Hectorite in Turkey Boron Deposit

터키 붕소광상산 헥토라이트의 열 및 산 처리에 따른 특성 연구

  • Koo, Hyo Jin (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Bu Yeong (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen Goo (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Koh, Sang Mo (Convergence Research Center for Development of Mineral Resources, Korea Institute of Geoscience and Mineral Resources)
  • 구효진 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 이부영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 고상모 (한국지질자원연구원 한반도 광물자원융합연구단)
  • Received : 2016.08.04
  • Accepted : 2016.09.08
  • Published : 2016.09.30

Abstract

Li-bearing hectorite, one member of trioctahedral smectite, occurred large in quantity and confirmed in Turkey western sedimentary boron deposit. Li-bearing hectorite attracted a particular attention because it is one of potential lithium resources. There have been no consensus for the change of hectorite due to heat and acid treatment although it is very important to use in industrial application. In this study, we examined changes of hectorite after heat and acid treatment as well as acid treatement followed by heating. We used clay ores collected in Bigadic deposit, which contained the highest $Li_2O$ content in Turkey boron deposits. Hectorite showed a strong endothermic reaction at $84^{\circ}C$ due to dehydration of absorbed water and interlayer water and a weak endothermic reaction above $600^{\circ}C$ owing to dehydration of crystallization water. The first endothermic reaction accompanied a large weight loss about 6%. Hectorite decomposed into enstatite, cristobalite and amorphous Fe material at $762^{\circ}C$ with exothermic reaction. When hectorite reacted with 3 kinds of 0.1 M acid during 1 hours, it had a good dissolution efficiency with $H_2SO_4{\geq}HCl$ > $HNO_3$ in order.

Li을 포함하는 삼팔면체 스멕타이트 계열의 헥토라이트가 터키 서부 퇴적 기원의 붕소광상에서 다량 존재하는 것이 확인되었으며, Li을 포함하는 헥토라이트는 리튬 자원으로서의 개발 가능성이 높기 때문에 많은 관심의 대상이 되고 있다. 헥토라이트의 열적 변화와 산에 대한 특성은 산업적인 적용을 위해서 매우 중요한 성질임에도 불구하고 아직 완전하게 이해된 것이 없다. 이번 연구에서는 터키 붕소광상 중 $Li_2O$ 함량이 가장 높은 비가디치 광상에서 채취된 점토광석을 이용하였다. 채취한 점토 광석 내에 존재하는 헥토라이트를 Stoke's Law를 이용하여 분리한 후 열 및 산 처리 실험을 실시하여특성 변화를 검토하였다. 헥토라이트는 $84^{\circ}C$ 부근에서 흡착수 및 층간수의 탈수에 의한 강한 흡열반응이 일어나며, $600^{\circ}C$ 이후 결정수의 탈수에 의한 흡열반응이 일어난다. 저온의 흡열반응은 약 6%의 많은 중량 감소를 동반한다. $762^{\circ}C$ 부근에서 헥토라이트가 완화휘석, 크리스토발라이트 및 비정질 산화철 광물로 분해되는 발열반응이 일어난다. 0.1 M 농도의 무기산으로 1시간 헥토라이트를 반응시킨 결과 황산 ${\geq}$ 염산 > 질산 순으로 용해 정도가 높았다.

Keywords

References

  1. Bradley, W.F. and Grim, R.E. (1951) High temperature thermal effects of clay and related minerals. American Mineralogist, 36, 182-201.
  2. Chae, S.-C., Jang, Y.-N., Bae, I.-K., Jang, H.-D., Ryou, K.-W., and Chae, Y.-B. (2008) Physicochemical properties of the synthetic hectorite. Journal of Mineralogical Society of Korea, 21, 313-320 (in Korean with English abstract).
  3. Earnest, C.M. (1983) Thermal analysis of hectorite. Part 1. Themogravimetry. Thermochimica Acta, 63, 277-289. https://doi.org/10.1016/0040-6031(83)80325-6
  4. Earnest, C.M. (1991) Thermal analysis of selected illite and smectite clay minerals. Part II. smectite clay minerals. In: Smykatz-Kloss, W. and Warne, S.St.J. (Eds.) Thermal Analysis in the Geosciences, Lecture Notes in Earth Sciences 38, Springer Verlag, Heidelberg, 288-313.
  5. Fahn, R. and Fenderl, K. (1983) Reaction products of organic dye molecules with acid-treated montmorillonite. Clay Minerals, 18, 447-458. https://doi.org/10.1180/claymin.1983.018.4.10
  6. Green, J.M., Mackenzie, K.J.D., and Sharp, J.H. (1970) Thermal reactions of synthetic hectorite. Clays and Clay Minerals, 18, 339-346. https://doi.org/10.1346/CCMN.1970.0180606
  7. Helvaci, C. (1995) Stratigraphy, mineralogy and genesis of the Bigadic borate deposits, Western Turkey. Economic Geology, 90, 1237-1260. https://doi.org/10.2113/gsecongeo.90.5.1237
  8. Helvaci, C. (1977) Geology, mineralogy, and geochemistry of the borate deposits and associated rocks at the Emet valley, Turkey. Ph.D. Thesis, University of Nottingham, 338p.
  9. Helvaci, C. (2004) Presence and distribution of lithium in borate deposits and some recent lake waters of West-Central Turkey. International Geology Review, 46, 177-190. https://doi.org/10.2747/0020-6814.46.2.177
  10. Inan, K., Dunham, A.C., and Esson, J. (1973) Mineralogy, chemistry, and origin of Kirka borate deposit, Eskisehir province, Turkey. Transactions, Institution of Mining and Metallurgy, Section B, 82, 114-123.
  11. Kim, G.Y. (2003) Hectorite. Journal of Mineral Society of Korea: Minerals and Industry, 16, 67-69 (in Korean).
  12. Kim, Y.-D., Ko, C.-S., Heo, C.-H., and Kim, S.-Y. (2010) Demand-supply and production of world lithium resources. Economic and Environmental Geology, 43, 283-289 (in Korean).
  13. Koh, S.-M., Lee, B.H., Lee, G., and Cicek, M. (2014) Occurrence and formation environment of boron deposits in Turkey. Economic and Environmental Geology, 47, 541-549 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.5.541
  14. Komadel, P., Madejova, J., Janek, M., Gates, W.P., Kirkpatrick, R.J., and Stucki, J.W. (1996) Dissolution of hectorite in inorganic acids. Clays and Clay Minerals, 44, 238-236.
  15. Lee, G.J., Kim S.-Y., and Koh, S.-M. (2013) Potential evaluation of the Uljin lithium deposit. Journal of Mineral Society of Korea: Minerals and Industry, 26, 32-36 (in Korean).
  16. Madejova, J., Bujdak, J., Janek, M., and Komadel, P. (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite. Spectrochimica Acta, Part A 54, 1397-1406. https://doi.org/10.1016/S1386-1425(98)00040-7
  17. Moon, H.S. (1996) Clay Mineralogy. Minumsa. 650p (in Korean).
  18. MTA (Maden Tetkik ve Arama) (2013) Li investigation of boron deposits in Turkey. unpublished.
  19. Paterson, E. and Swaffield, R. (1987) Thermal stability of acid extracted montmorillonites. Proceeding of International Clay Conference, Stockholm 1963, 85-96.
  20. Rompaey, K.V., Ranst, E.V., Coninck, F.D., and Vindevogel, N. (2002) Dissolution characteristics of hectorite in inorganic acids. Applied Clay Science, 21, 241-256. https://doi.org/10.1016/S0169-1317(02)00086-8
  21. USGS. (2015) Mineral Commodity Summaries 2015, 199p.
  22. Yoon, S.-J. and Moon, H.-S. (1994) The effect of acid treatment of bentonite on its crystal structure. Economic and Environmental Geology, 27, 507-521 (in Korean with English abstract).

Cited by

  1. Lithium Extraction from Smectitic Clay Occurring in Lithium-bearing Boron Deposits in Turkey vol.29, pp.4, 2016, https://doi.org/10.9727/jmsk.2016.29.4.167