DOI QR코드

DOI QR Code

An Analysis of Students' Mathematical Modeling in the RUBRIC Writing

루브릭(RUBRIC) 쓰기에 나타난 수학적 모델링 연구

  • Received : 2016.04.14
  • Accepted : 2016.09.12
  • Published : 2016.09.30

Abstract

This study aims to examine the impact of RUBRIC writing on students' mathematical modeling. By analyzing 23 tenth grade students' responses to seven problems related to mathematical modeling, we found that the students who used RUBRIC writing could not only get more correct answers but also could use more various representations and mathematical models than the students who did not use it. The students with RUBRIC writing also could translate between reality and mathematics more appropriately, and better explain the process to solve the problem than the counterpart. It implies that RUBRIC writing can help improve students' mathematical modeling and problem solving as an alternative instruction and assessment.

본 연구에서는 Mason 외(2010)가 제시한 루브릭(RUBRIC) 쓰기를 교수-학습에 적용하였을때 학생들의 수학적 모델링을 분석함으로써 새로운 교수-학습 및 평가 방안으로서의 루브릭 쓰기의 가능성을 탐구해 보고자 한다. 고등학교 1학년 23명의 학생을 루브릭 쓰기를 실시한 그룹과 그렇지 않은 그룹으로 나누어 10회에 걸쳐 18문항을 해결하도록 하였고 이 중 수학적 모델링과 관련된 7문항에 대한 학생 답안을 분석하였다. 그 결과 루브릭 쓰기를 사용한 학생들이 그렇지 않은 학생들에 비해 문항의 정답률이 높았을 뿐 아니라 질적으로도 보다 더 다양한 표현과 모델을 사용하고 실재와 수학간의 원활한 번역과 해석을 할 수 있는 등 수학적 모델링 과정에 차이를 보였다. 더 나아가 학생들의 문제해결과 수학적 사고의 확장으로도 나타남을 알 수 있어 본 연구 결과는 루브릭 쓰기가 효과적인 교수-학습 및 평가 방안이 될 수 있음을 시사하고 있다.

Keywords

References

  1. 교육부(2015). 수학과 교육과정. 교육부 고시 제2015-74호.(The Ministry of Education (2015). Curriculum of mathematics department, The Ministry of Education Guidelines, 2015-74.)
  2. 김선희 (2005). 문제 중심 학습의 방법으로서 수학적 모델링에 관한 고찰, 대한수학교육학회지 <학교수학>, 7(3), 303-318.(Kim, S. H. (2005). Consideration of mathematical modeling as a problem-based learning method. School Mathematics, 7(3), 303-318.)
  3. 김영국 (2008). 수학적 표현의 교수학적 의의, 한국수학교육학회지 시리즈 A <수학교육>, 47(2), 155-168.(Kim, Y. K. (2008). On the pedagogical significance of mathematical representations. Mathematical Education, 47(2), 155-168.)
  4. 김혜영 (2015). 학생들의 문제해결 과정의 변화를 통한 루브릭 쓰기의 효과 분석: 고등학교 1학년 학생을 중심으로. 이화여자대학교 교육대학원 석사학위논문.(Kim, H. Y. (2015). An analysis of RUBRIC writing effects on students' changes of problem solving process: Focusing on 1st grade high school students. Ewha Womans University, Graduate School of Education. Master's thesis.)
  5. 남윤정.송영무 (2008). 고등학교 학생들의 수학 본질과 수학 학습에 대한 신념 연구, 대한수학교육학회지 <학교수학>, 10(4), 649-669.(Nam, Y. J., & Song, Y. M. (2008). An analytic study of beliefs about mathematics and mathematics education of high school students'. School Mathematics, 10(4), 649-669.)
  6. 노선숙.김민경.우현주.차인숙 (2001). 창조적 지식기반사회의 수학교육과정 개발을 위한 기초조사연구: 수학교육목표에 대한 교사, 학생의 인식, 한국수학교육학회지 시리즈 A <수학교육>, 40(2), 161-177.(Noh, S. S., Kim, M. K., Yu, H. J. & Cha, I. S. (2001), Students and teachers' perceptions on the goals of mathematics education: A foundational research for the development of mathematics curriculum model for a creative knowledge-based society. Mathematical Education, 40(2), 161-177.)
  7. 방정숙.이지영.이상미.박영은.김수경.최인영.선우진 (2015). 한국, 중국, 일본, 미국 초등 수학과 교육과정에서 강조하는 수학과 과정 요소에 대한 분석. 대한수학교육학회지 <학교수학>, 17(2), 289-308.(Pang, J. S., Lee, J. Y., Lee, S. M., Park, Y. E., Kim,, S. K., Choi, I. Y. & Sunwoo, J. (2015). An analysis of mathematical processes in elementary mathematics curricula of Korea, China, Japan, and the US. School Mathematics, 17(2), 289-308.)
  8. 박석순.김구연 (2013). 수학.논술형 문항에 대한 중학생들의 인식 및 수학적 숙련도, 한국학교수학회논문집, 16(1), 63-86.(Park, S. S. & Kim, G. Y. (2013). Middle school students' perceptions about and mathematical proficiency in constructed-response items. Journal of the Korean School Mathematics, 16(1), 63-86.)
  9. 신은주.이종희 (2005). 구체와 추상을 연결하는 모델의 중재기능 분석, 대한수학교육학회지 <수학교육학연구>, 15(1), 1-19.(Shin, E. J. & Lee, C. H. (2005). An analysis of mediation function between concrete and abstract of the model. Journal of Educational Research in Mathematics, 15(1). 1-19.)
  10. 이미경.곽영순.민경석.채선희.최성연.최미숙.나귀수 (2004). PISA 2003 결과 분석 연구. 연구보고 RRE 2004-2-1. 서울: 한국교육과정평가원.(Lee, M. K., Kwak, Y. S., Min, K. S., Chae, S. H., Choi, S. Y., Choi, M. S. & Na, G. S. (2004). The results from PISA 2003. Research report, RRE 2004-2-1. Seoul, Korea: Korea Institute for Curriculum and Education.)
  11. Andrade, H. G. (2000). Using rubrics to promote thinking and learning. Educational Leadership, 57(5), 13-18.
  12. Blum, W. (1993). Mathematical modelling in mathematics education and instruction. In T. Breiteig, I. Huntley, & G. Kaiser-messmer (Eds.), Teaching and learning mathematics in context (pp. 3 - 14). Chichester, UK: Ellis Horwood.
  13. Blum, W. (2011). Can modelling be taught and learnt? some answers from empirical research. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling(pp. 15-30). Dordrecht, the Netherlands: Springer.
  14. Burton, L. (1984). Mathematical Thinking: The Struggle for Meaning. Journal for Research in Mathematics Education, 15(1), .35-49. https://doi.org/10.2307/748986
  15. Cornell, C. (1999). "I hate math! I couldn't learn it, and I can't teach it!" Childhood Education, 75(4), 225-231. https://doi.org/10.1080/00094056.1999.10522022
  16. English, L. D. (2003). Reconciling theory, research, and practice: A models and modelling perspective. Educational Studies in Mathematics, 54(2/3), 225-248. https://doi.org/10.1023/B:EDUC.0000006167.14146.7b
  17. Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht, the Netherlands: Kluwer.
  18. Kehle, P. E., & Lester, F. K. (2003). A semiotic look at modeling behavior. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 97-122). Mahwah, NJ : Lawrence Erlbaum.
  19. Lesh, R., & Doerr, H. (2003). Foundations of a models and modelling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3-34). Mahwah, NJ : Lawrence Erlbaum.
  20. Lesh, R., & Lehrer, R. (2003). Models and modeling perspectives on the development of students and teachers. Mathematical Thinking and Learning, 5(2), 109-129. https://doi.org/10.1080/10986065.2003.9679996
  21. Mason, J., Stacey, K., & Burton, L. (2010). Thinking mathematically (2nd ed.). Harlow, UK: Prentice Hall.
  22. Maki, D. P., & Thompson, M. (1973). Mathematical models and applications. Englewood Cliffs, NJ: Prentice Hall.
  23. Montgomery, K. (2000). Classroom rubrics: Systemizing what teachers do naturally. Clearing House, 73(6), 324-328. https://doi.org/10.1080/00098650009599436
  24. Murata, A., & Kattubadi, S. (2012). Grade 3 students' mathematization through modeling: Situation models and solution models with mutli-digit subtraction problem solving. Journal of Mathematical Behavior, 31(1), 15-28. https://doi.org/10.1016/j.jmathb.2011.07.004
  25. National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: Author.
  26. Osborne, J., Black, P., Boaler, J., Brown, M., Driver, R., & Murray, R. (1997). Attitudes to science, mathematics and technology: A review of research. London, UK: King's College, University of London.
  27. Popham, J. W. (1997). What's wrong-and what's right-with rubrics. Educational Leadership, 55(2), 72-75.
  28. Stacey, K. (2006). What is mathematical thinking and why is it important. Progress report of the APEC project: Collaborative studies on innovations for teaching and learning mathematics in different cultures(II): Lesson study focusing on mathematical thinking.

Cited by

  1. 2007년 이후 국내 논문 결과에 근거한 수학적 모델링 탐색 vol.32, pp.2, 2016, https://doi.org/10.7468/jksmee.2018.32.2.225