DOI QR코드

DOI QR Code

Wetting Characteristics of Water Droplet on the Solid Surfaces with Variable Pillar-Type Nanostructures

다양한 기둥 타입을 가지는 나노 구조물 고체 표면에서의 물 액적 젖음 특성

  • Yoo, Min Jung (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Kwon, Tae Woo (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Ha, Man Yeong (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2016.05.30
  • Accepted : 2016.07.19
  • Published : 2016.10.01

Abstract

A numerical study, using the molecular dynamics simulation method, was carried out to investigate the wetting characteristics of water droplets on a solid square pillar surface with variable periodic edge length patterns at the nanoscale. In this study, the pillar plane was supposed to be rectangular or square shaped. In addition, the surface area was increased while the shape of the pillar plane was kept fixed. In the case of the square pillar, the edge length increased from $4.24{\AA}$ to $12.72{\AA}$. Also, the rectangular pillar had two types of length edges. In this case, one edge length was fixed at $8.48{\AA}$ and the other edge length was increased from $4.24{\AA}$ to $12.72{\AA}$. Through these length changes, the hydrophobicity and hydrophilicity of a water droplet on the variable pillar surfaces were analyzed.

본 연구는 길이에 따른 사각 기둥 타입을 변수로 선정하여 각각의 길이 패턴을 지닌 고체 표면에서의 물 액적 젖음 특성을 분자 동역학을 이용하여 규명하였다. 기둥의 표면 형상을 정사각형과 직사각형의 형태로 가정하였고, 정해진 형상에서의 표면 면적을 증가시켰다. 정사각형 형상의 경우 각 변의 길이가 $4.24{\AA}$, $8.48{\AA}$, $12.72{\AA}$로 증가하였으며, 직사각형 형상의 경우 고정된 한 변은 $8.48{\AA}$의 길이를 가지며 다른 한 변의 길이는 $4.24{\AA}$, $8.48{\AA}$, $12.72{\AA}$로 증가하였다. 이러한 길이 변화를 통해 사각기둥 표면형상의 변화 및 전체 고체표면의 면적 대비 기둥이 차지하는 면적의 비율에 따른 물 액적의 변화를 살펴보고, 표면과 물 액적과의 접촉각을 측정하여 비교 분석하였다.

Keywords

References

  1. Su, Y., Ji, B., Huang Y. and Hwang, K.-C., 2010, "Nature's Design of Hierarchical Superhydrophobic Surfaces of a Water Strider for Low Adhension and Low-Energy Dissipation," Langmuir, Vol. 26, No. 24, pp. 18926-18937. https://doi.org/10.1021/la103442b
  2. Kong, Y. S. and Kim, T. W., 2013, "Wettability of Biomimetic Riblet Surface Like Sharkskin," Journal of the KSTLE, Vol. 29, pp. 304-309.
  3. Wenzel R. N., 1936, "Resistance of Solid Surfaces to Wetting by Water," Ind. Eng. Chem, Vol. 28, pp. 988-994. https://doi.org/10.1021/ie50320a024
  4. Cassie, A. B. D. and Baxter, S., 1944, "Wettability of Porous Surfaces," Trans. Faraday Soc., Vol. 40, pp. 546-551. https://doi.org/10.1039/tf9444000546
  5. Jung, Y. C. and Bhushan, B., 2010, "Biomimetic Structures for Fluid Drag Reduction in Laminar and Tublent Flows," J. Phys. Condens. Matter., Vol. 22, p. 035104. https://doi.org/10.1088/0953-8984/22/3/035104
  6. Jeong, W.-J., Ha, M.-Y., Yoon, H.-S. and Ambrosia, M., 2012, "Dynamic Behavior of Water Droplet on Solid Surfaces with Pillar-Type Nanostructures," Langmuir, Vol. 28, No. 12, pp. 5360-5371. https://doi.org/10.1021/la205106v
  7. Sun, K. W., Kwon, T. W. and Ha, M. Y., 2015, "A Numerical Study on Wetting Characteristics of Water Droplet on the Nanosized Wavy-patterned Surface and Stripe-patterned Surface," KSME, pp. 4160-4165.
  8. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L. and Schulten, K., 2005, "Scalable Molecular Dynamics with NAMD," J.Comput.Chem., Vol. 26, No. 16, pp. 1781-1802. https://doi.org/10.1002/jcc.20289
  9. Kwon, T. W., Ambrosia, M. S., Jang, J. and Ha, M. Y., 2015, "Dynamic Hydrophobicity of Heterogeneous Pillared Surfaces at the Nano-scale," Journal of Mechanical Science and Technology, Vol. 29. No. 4, pp. 1-9.
  10. Choi, H., Hong, S.-D., Yoon, H.-S. and Ha, M.-Y., 2009, "Molecular Dynamics Simulation of Water Droplet on the Periodic Stripe Patterned Surfaces," KSME, pp. 302-305.
  11. Hirvi, Janne T. and Pakkanen, Tapani A., 2006, "Molecular Dynamics Simulations of Water Droplets on Polymer Surfaces," The Journal of Chemical Physics, Vol. 125, p. 144712. https://doi.org/10.1063/1.2356470
  12. Lundgren, M., Allan, Neil L. and Cosgrove, T., 2003, "Molecular Dynamics Study of Wetting of a Pillar Surface," Langmuir 2003, Vol. 19, pp. 7127-7129. https://doi.org/10.1021/la034224h
  13. Marmur, A., 2003, "Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be?," Langmuir 2003, Vol. 19, pp. 8343-8348. https://doi.org/10.1021/la0344682
  14. Yong X. and Zhang, Lucy T., 2009, "Nanoscale Wetting on Groove-Patterned Surfaces," Langmuir 2009, Vol. 25, No. 9, 5045-5053. https://doi.org/10.1021/la804025h
  15. Ambrosia, M. S., Ha, M. Y. and Balachandar, S., 2013, "The Effect of Pillar Surface Fraction and Pillar Height on Contact Angles Using Molecular Dynamics," Applied Surface Science, Vol. 282, pp. 211-216. https://doi.org/10.1016/j.apsusc.2013.05.104
  16. Ko, J.-A., Choi, H.-J., Ha, M.-Y., Hong, S.-D. and Yoon, H.-S., 2010, "A Study on the Behavior of Water Droplet Confined between an Atomic Force Microscope Tip and Rough Surfaces," Langmuir 2010, Vol. 26, No. 12, 9728-9735. https://doi.org/10.1021/la100452m