DOI QR코드

DOI QR Code

액체질소를 이용한 강관압입공법의 역학적 수리학적 안정화공법

Mechanical and Hydraulic Stabilizing Method of Steel Pipe Propulsion Tunneling Using Liquid Nitrogen

  • Ji, Subin (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Lee, Kicheol (Department of Civil and Environmental Engineering, Incheon National University) ;
  • Lee, Ju-hyung (Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Dongwook (Department of Civil and Environmental Engineering, Incheon National University)
  • 투고 : 2016.07.18
  • 심사 : 2016.09.08
  • 발행 : 2016.09.30

초록

본 연구에서는 강관압입 공법 적용 시 굴착 선단부에서 수리학적 또는 역학적 불안정으로 인해 발생 가능한 붕괴를 방지하는 목적으로 액체질소를 주입하여 굴착선단부를 안정화하는 공법에 관하여 연구하였다. 강관압입 공법 적용 시 오거 내 중공(中空)에 액체질소 주입관(호스)를 넣어 오거 선단부에 액체질소를 분사하는 방식을 고안하였다. 실내 실험을 위해 직경이 1,000 mm인 강관압입관을 기준으로 1/5축소 모형오거 및 토조를 제작하였다. 화강풍화토로 지반을 조성하여 함수비를 변화시켜가며 액체질소를 주입한 결과 오거 선단부에 동결 구근이 형성되어 강관압입공법 시공 시 발생 가능한 붕괴를 막을 수 있는 것으로 확인되었다. 액체질소를 이용한 동결공법은 지반이 모래일 때 보다는 소성이 있는 화강풍화토일 경우 더 효과적이었으며, 화강풍화토 지반의 경우 함수비가 최적함수비 이상일 경우 동결효율이 증가하는 것을 확인하였다. 액체질소 분사시간이 길어질수록 동결범위가 더 커졌으며 인위적으로 함수비를 급격히 증가시켜 수리학적 불안정을 유발해 보았더니 강관과 오거 전면의 지반이 약 120~300초 이내에 동결 되어 관으로 흙이 유입되지 않았으며, 차수효과가 있는 것으로 분석되었다. 이번 연구에서는 강관압입공법 안정화에 미치는 주요 인자에 대하여 액체질소를 이용하여 강관압입공법 시공 시 역학적 수리학적인 불안정이 발생할 경우, 화강풍화토 지반의 경우 붕괴를 막을 수 있는 효율적인 방법이 될 수 있다는 것을 확인하는데 큰 의의를 둔다.

In this study, to prevent possible collapse caused by hydraulic or mechanical instability, liquid nitrogen injection method is developed and implemented at the tip of drilling auger of steel pipe propulsion tunneling. In this study, 1/5-scale model auger and sand chamber were manufactured. The prototype diameter of steel pile (or casing) is assumed about 1,000 mm. For the frictional sandy soils and plastic weathered soils, liquid nitrogen injection methods were tested varying water contents of the soils. For the induced hydraulic instability, the ground near the drilling auger was frozen within approximately 5 minutes preventing mechanical collapse and water infiltration. Securing stability of steel pile propulsion tunneling using liquid nitrogen was much more effective for which the water content of the soil somewhat exceeds the optimum water content.

키워드

참고문헌

  1. Beskow, G. (1935). Soil freezing and frost heaving with special application to roads and railroads. Swed. Geol. Soc., Ser. C, No.375, 26th year book No.3 (translated 183 by J.O. Osterberg, Northwestern Univ., 1947). Reprinted in: Technical Report.
  2. KS. (2011), "Standard test method for density of soil particles"F 2308.
  3. KS. (2011), "Standard test method for soil compaction using a rammer"F 2312.
  4. KS. (2012), "Test method for particle size distribution of soils"F 2302.
  5. KS. (2015), "Standard test method for liquid limit and plastic limit of soils"F 2303.
  6. KS. (2015), "Standard test method for permeability of saturated soils"F 2322.
  7. Lee, I. M. (2011), Principle of soil mechanics, Saeron, Seoul, pp. 566.
  8. Lee, H.K (2011). Trends of Artificial Ground Freezing Method, KSEG 2011 Fall Conference, KSEG, pp.10-11.
  9. Park, K.B., Lee. J.H., Yoon, H.K., Kim, D. (2016) Hydraulic and Thermal Conductivities of Kaolin-Silica Mixtures under Different Consolidation Stresses, Marine Georesources & Geotechnology, Vol.34, No.6, pp.532-541, DOI:10.1080/1064119X.2015.1033072.
  10. Ryu, B.H (2013). Deformation Factors and Behavior Characteristics of the Water Supply Pipeline During Ground Freezing, Ph.D Thesis, Incheon National University, pp.6-21.
  11. Shin. E.C, Kang. H.M, Park. J.J, Kim. S.H (2009). Experimental Study of Frozen Barrier Using Artificial Ground Freezing System, Journal of Korean Geosynthetics Society, Korean Geosynthetics Society, Vol.8, pp.35-44.
  12. Shin. E.C, Kang. H.H, Park. J.J, Kim. S.H. (2010). Experimental Study on Barrier of Contaminated Soils Using Artificial Ground Freezing System, KGES-KGS Geo-environmental and Slope Stability Conference, Korean Geo-Environmental Society, pp. 127-132.
  13. Shin. E.C, Kim J,S. (2011). Experimental Study on Freezing Soil Barrier Wall for Contaminant Transfer Interception, Journal of Korean Geosynthetics Society, Korean Geosynthetics Society, Vol.10, pp.29-34.
  14. Shin, J.W, (2007) Comparing frozen soil properties of Korean, Antarctic and Siberian Soils, Master Thesis, Kook Min University, pp.3-37.
  15. Statistics Korea (2015). Accident Report in Statistics Korea website (http://www.index.go.kr/)
  16. Stoss, K. and Valk, J. (1979). Uses and Limitations of Ground Freezing with Liquid Nitrogen, Engineering Geology, Vol.13, pp.485-494. https://doi.org/10.1016/0013-7952(79)90051-6
  17. Sundberg, Jan (1988), Thermal Properties of Soils and Rocks, Swedish Geotechnical Institute, Report No.35, pp.3-44.
  18. Taber, S. (1930). The mechanics of frost heaving. Journal of Geology, Vol.38, pp.303-317. https://doi.org/10.1086/623720
  19. KICT (2007). Research on the Development of Design and Construction Techniques of Artificial Ground Freezing to Construction Application, Korea Agency for Infrastructure Technology Advancement , Technical Report, Korea Institute of Civil Engineering and Building Technology.