DOI QR코드

DOI QR Code

Antioxidation and Anti-inflammation Activity of Isodon inflexus (Thunb.) Kudo Extract and Its Isolated Substance

산박하 추출물과 분리물질의 항산화 및 항염증 활성

  • Bu, Hee-Jung (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Lee, Sunjoo (Faculty of Chemistry & Cosmetics, College of Natural Sciences, and Cosmetic Science Research Center, Jeju National University)
  • 부희정 (제주대학교 생명과학기술혁신센터) ;
  • 이선주 (제주대학교 화장품과학연구센터, 제주대학교 자연과학대학 화학-코스메틱스 학과)
  • Received : 2016.08.02
  • Accepted : 2016.09.09
  • Published : 2016.09.30

Abstract

The functions of anti-oxidation and anti-inflammation were investigated with the crude 80% methanol extract, subfractions and henryin isolated from Isodon inflexus (Thunb.) Kudo (I. inflexus (Thunb.) Kudo). Antioxidative ability was evaluated by bioassays using 2, 2-diphenyl-1-1-picrydrazyl (DPPH) free radical scavenging activity, xanthine oxidase inhibition, and superoxide radical scavenging effects. Ethyl acetate and butanol fractions exhibited free radical scavenging activity on superoxide with $IC_{50}$ values of $0.9{\mu}g/mL$, $0.2{\mu}g/mL$, respectively, which were stronger activity than that of allopurinol ($2.2{\mu}g/mL$) as reference. For the inhibition of anti-inflammatory activity in RAW 264.7 cell, the ethyl acetate fraction showed strong inhibition activity NO production, and henryin isolated from its subfraction reduced the activity in a dose-dependent manner. Ethyl acetate fraction and henryin suppressed not only mRNA expression of iNOS and COX-2, but also the mRNA expression of pre-inflammatory cytokines such as, TNF-${\alpha}$, 1L-$1{\beta}$, IL-6, in a dose-dependent manner. These results suggested that ethyl acetate fraction of I. inflexus (Thunb.) Kudo has considerable potential as a cosmetics ingredient with an antioxidant and anti-inflammatory effects and henryin can be applied as an functional reference.

본 연구는 제주에서 자생하는 산박하(Isodon inflexus (Thunb.) Kudo, I. inflexus (Thunb.) Kudo )의 80% 메탄올 추출물과 분획물, 그리고 분리 물질인 henryin의 항산화능 및 항염증에 관하여 조사한 것이다. 항산화 효과는 DPPH 라디칼 소거, xanthine oxidase 억제 및 superoxide radical 소거 활성 측정을 통하여 수행할 수 있는데, 산박하 추출물의 효능을 측정한 결과 superoxide radical 소거 활성에서 에틸아세테이트 분획물과 부탄올 분획물의 $IC_{50}$값이 각각 $0.9{\mu}g/mL$, $0.2{\mu}g/mL$로 대조군인 allopurinol ($2.2{\mu}g/mL$)에 비해 우수한 억제 효능을 나타내었다. RAW 264.7 세포주를 사용한 항염 효능 평가에서, 에틸아세테이트 분획물이 강한 NO 억제 효과를 나타내었고, 이 분획으로부터 순수 분리하여 구조 동정된 물질인 henryin 역시 농도 의존적으로 NO 억제시킴을 확인하였다. 특히, 에틸아세테이트 분획물과 henryin은 iNOS, COX-2와 염증관련 cytokine인 TNF-${\alpha}$, IL-6, IL-$1{\beta}$의 mRNA 발현을 농도 의존적으로 억제하였다. 이상의 결과들로부터 산박하 에틸아세테이트 추출물이 항산화 및 항염증 효능을 갖는 화장품 원료로서 개발 가능성이 있고 henryin은 기능성 지표물질로 활용될 수 있음이 시사되었다.

Keywords

References

  1. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B., 63(13), 41 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
  2. J. Uitto and E. F. Bernstein, Molecular mechanisms of cutaneous aging: connective tissue alterations in the dermis, J. Invest. Dermatol. Symp. Proc., 3(1), 41 (1998).
  3. J. Nordberg and E. S. J. Arner, Reactive oxygen species, antioxidants, and the mammallan thioredoxin system, Free Radic. Biol. Med., 31(11), 1287 (2001). https://doi.org/10.1016/S0891-5849(01)00724-9
  4. H. F. Stich, The beneficial an hazardous effects of simple phenolic compounds, Mutat. Res., 259(3-4), 307 (1991). https://doi.org/10.1016/0165-1218(91)90125-6
  5. P. C. Kuo and R. A. Schroeder, The emerging multifaceted roles of nitric oxide, Ann. Surg., 221(3), 220 (1995). https://doi.org/10.1097/00000658-199503000-00003
  6. D. J. Stuehr, H. J. Cho, N. S. Kwon, M. F. Weise, and C. F. Nathan, Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD-and FMN-containing flavoprotein, Proc. Natl. Acad. Sci. USA, 88(17), 7773 (1991). https://doi.org/10.1073/pnas.88.17.7773
  7. A. Weisz, L. Cicatiello, and H. Esumi, Regulation of the mouse inducible type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine, Biochem. J., 316(1), 209 (1996). https://doi.org/10.1042/bj3160209
  8. H. Wiseman, Dietary influences on membrane function: importance protection against oxidative damage and disease, J. Nutr. Biochem., 7(1), 2 (1996). https://doi.org/10.1016/0955-2863(95)00152-2
  9. T. Noro, T. Miyase, Y. Oda, and A. Ueno, Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa, Chem. Pharm. Bull., 31(11), 3984 (1983). https://doi.org/10.1248/cpb.31.3984
  10. J. Z. Cheng, S. C. Kuob, S. C. Chanb, F. N. Koa, and C. M. Tenga, Antioxidant properties of butein isolated from Dalbergia odorifera, Biochem. Biophys. Acta., 1392(2), 291 (1998). https://doi.org/10.1016/S0005-2760(98)00043-5
  11. M. Y. Son, S. H. Kim, S. H. Nam, S. K. Park, and N. J. Sung, Antioxidant activity of Korean green and fermented tea extracts, J. Life Sci., 14(6), 920 (2004). https://doi.org/10.5352/JLS.2004.14.6.920
  12. Z. Hongjie and S. Handong, Diterpenoids from Rabdosia flexicaulis, Phytochemistry, 8(12), 3543 (1961).