DOI QR코드

DOI QR Code

알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon

  • 박영철 (경상대학교 화학공학과 /공학연구원) ;
  • 최주홍 (경상대학교 화학공학과 /공학연구원)
  • Bak, Young-Cheol (Department of Chemical Engineering / Engineering Research Institute, Gyeongsang National University) ;
  • Choi, Joo-Hong (Department of Chemical Engineering / Engineering Research Institute, Gyeongsang National University)
  • 투고 : 2016.03.11
  • 심사 : 2016.06.28
  • 발행 : 2016.10.01

초록

대나무를 원료로 탄화 및 활성화온도 $900^{\circ}C$에서 대나무 활성탄을 만들고, 이 대나무 활성탄에 알칼리 금속(Na, K)과 알칼리토금속(Ca, Mg)을 담지 시켜 알칼리 담지 대나무활성탄을 제조하였다. 제조된 알칼리 담지 활성탄의 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐 대나무활성탄의 재활용을 위하여 알칼리 담지 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 비등온반응(반응온도 $20{\sim}850^{\circ}C$, NO 농도 0.1 kPa)과 등온반응(반응온도 600, 650, 700, 750, 800, $850^{\circ}C$, NO 농도 0.1~1.8 kPa) 조건에서 하였다. 실험 결과, 대나무 활성탄 특성 분석에서 알칼리 담지 대나무 활성탄에서는 알칼리 담지량이 증가할수록 세공 부피와 표면적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 Ca금속담지 대나무활성탄[BA(Ca)]과 Na금속담지 대나무활성탄[BA(Na)], K금속담지 대나무활성탄[BA(K)], Mg금속담지 대나무활성탄[BA(Mg)]이 대나무활성탄[BA]에 비하여 반응속도가 향상되는 것을 볼 수 있다. BA(Ca)> BA(Na)> BA(K)> BA(Mg)> BA 순으로 촉매 활성이 유효하였다. NO 반응에서의 활성화에너지는 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol[BA(Mg)]로 나타났고, NO 분압에 대한 반응차수는 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30[BA(Mg)]이었다.

The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

키워드

참고문헌

  1. Bak, Y. C., Cho, K. J. and Choi, J. H., "Production and $CO_2$ Adsorption Characteristics of Activated Carbon from Bamboo by $CO_2$ Activation Method," Korean Chem. Eng. Res., 43(1), 146-152(2005).
  2. Yaverbaum, L. H., "Nitrogen Oxides Control and Removal-Recent Developments," Noyes Data Corporation, N.J., pp. 45-53 (1979).
  3. Sloss, L. L., "Nitrogen Oxides Control Technology Fact Book," Noyes Data Corporation, N. J., pp. 38-53(1992).
  4. Feng, B., Liu, H., Yuan, J., Lin, Z. and Liu, D., "Mechanisms of $N_2O$ Formation from Char Combustion," Energy & Fuels, 10, 203-208(1996). https://doi.org/10.1021/ef9500898
  5. Burch, T. E., Tillman, F. R., Chen, W., Lester, T. W., Conway, R. B. and Sterling, A. M., "Partitioning of Nitrogenous Species in the Fuel-rich Stage of Reburning," Energy & Fuels, 5, 231-241(1991). https://doi.org/10.1021/ef00026a001
  6. Park, H. M., Park, Y. K. and Jeon, J. K., "De NOx Performance of Catalysts Regenerated by Surfactant Solution," Korean Chem. Eng. Res., 49(6), 739-744(2011). https://doi.org/10.9713/kcer.2011.49.6.739
  7. Yoon, K. S. and Ryu, S. K., "Removal of NO using Surface Modified Activated Carbon Fiber(ACF) by Impregnation and Heat-treatment of Propellant Waste," The Korean Journal of Chemical Engineering, 27(6), 1882-1886(2010). https://doi.org/10.1007/s11814-010-0294-4
  8. Furusawa, T., Tsunoda, M., Tsujimura, M. and Adschri, T., "Nitric Oxide Reduction by Char and Carbon Monooxide," Fuel, 64, 1306-1309(1985). https://doi.org/10.1016/0016-2361(85)90193-0
  9. Chan, L. K., Sarofim, A. F. and Beer, J. M., "Kinetics of the NOcarbon Reaction at Fluidized-bed Combustor Conditions," Combustion and Flame, 52, 37-45(1983). https://doi.org/10.1016/0010-2180(83)90119-0
  10. Suzuki, T., Kyotani, T. and Tomita, A., "Study on the Carbon-Nitric Oxide Reaction in the Presence of Oxygen," Ind. Eng. Chem. Res., 33, 2840-2845(1994). https://doi.org/10.1021/ie00035a038
  11. Teng, H., Suuberg, E. M. and Calo, J. M., "Studies on the Reduction of Nitric Oxide by Carbon: the NO-carbon Gasification Reaction," Energy & Fuels, 6, 398-406(1992). https://doi.org/10.1021/ef00034a008
  12. DeGroot, W. F. and Richards, G. N., "Gasification of Cellulosic Chars in Oxygen and in NO," Carbon, 29(2), 179-183(1991). https://doi.org/10.1016/0008-6223(91)90068-T
  13. Teng, H., Lin, H. and Hsieh, Y., "Thermogravimetric Studies on the Global Kinetics of Carbon Gasification in Nitrous Oxide," Ind. Eng. Chem. Res., 36, 523-529(1997). https://doi.org/10.1021/ie960582m
  14. Park, S. J., Kim, B. J. and Kawasaki, J., "Studies on Textural Properties of Activated Carbon Fibers Containing Silver Metal and Their NO Removal Test," Korean Chem. Eng. Res., 41(5), 649-654(2003).
  15. Bak, Y. C., "Intrinsic Reactivity of NO and $N_2O$ Gas with Korean Anthracites," Energy Engg. J, 8(2), 279-284(1999).
  16. Kim, J., Hong, I. and Ha, B., "Reduction and Oxidation of NO over Activated Carbon," J. Korean Soc. Environ. Eng., 21(3), 595-604(1999).
  17. Illan-Gomaz, M. J., Linares-Solano, A., Radovic, L. R. and Salinas-Martinez de Lecea, C., "NO Reduction by Activated Carbons. 7. Some Mechanistic Aspects Uncatalyzed and Catalyzed Reaction," Energy & Fuels, 10, 158-168(1996). https://doi.org/10.1021/ef950066t
  18. Bak, Y. C., Choi, J. H. and Lee, G., "Production of Silver Impregnated Bamboo Activated Carbon and Reactivity with NO Gases," Korean Chem. Eng. Res., 52(6), 807-813(2014). https://doi.org/10.9713/kcer.2014.52.6.807
  19. Garcia-Garcia, A., Illan-Gomaz, M. J., Linares-Solano, A. and Salinas-Martinez de Lecea, C., "Potassium-containing Briquetted Coal for Reduction of NO," Fuel, 76(6), 499-505(1997). https://doi.org/10.1016/S0016-2361(97)00009-4
  20. Illan-Gomaz, M. J., Linares-Solano, A., Radovic, L. R. and Salinas-Martinez de Lecea, C., "NO Reduction by Activated Carbons. 4. Catalysis by Calcium," Energy & Fuels, 9, 112-118(1995). https://doi.org/10.1021/ef00049a017
  21. Richthofen, A. V., Wendel, E. and Neuschutz, D., "Kinetics of NO Reduction with Pure and Potassium-doped Carbon," Fresenius J. Anal. Chem., 346, 261-264(1993). https://doi.org/10.1007/BF00321427
  22. Guo, F. and Hecker, W. C., "The Effects of CaO Catalysis on the Kinetics of NO Reduction by Beulah Zap Char," ACS Div. Fuel Chem. Prepr., 41(1), 179-183(1996).
  23. Aarna, I. and Suuberg, M., "A Review of the Kinetics of the Nitric Oxide-carbon Reaction," Fuel, 76, 475-486(1997). https://doi.org/10.1016/S0016-2361(96)00212-8