DOI QR코드

DOI QR Code

Degradation of Toluene and Acetic Acid Using Cell-Free Enzyme System from Single Cell-Strain

Single cell-strain부터 유래된 무세포 효소 시스템을 이용한 톨루엔 및 아세트산 분해

  • Jang, Jae Hyun (Department of Chemical Engineering, Kyungpook National University) ;
  • Kim, Yeji (Department of Chemical Engineering, Kyungpook National University) ;
  • Roh, Tae Yong (Department of Chemical Engineering, Kyungpook National University) ;
  • Park, Joong Kon (Department of Chemical Engineering, Kyungpook National University)
  • 장재현 (경북대학교 화학공학과) ;
  • 김예지 (경북대학교 화학공학과) ;
  • 노태용 (경북대학교 화학공학과) ;
  • 박중곤 (경북대학교 화학공학과)
  • Received : 2016.04.12
  • Accepted : 2016.06.01
  • Published : 2016.10.01

Abstract

This study deals with the possible degradation of toluene and acetic acid when subjected to cell-free enzyme system from the toluene degrading bacteria Pseudomonas putida and acetic acid degrading bacteria Cupriavidus necator. P. putida produces toluene dioxygenase only under the existence of toluene in culture medium and toluene is degraded to cis-toluene dihydrodiol by this enzyme. C. necator produces acetyl coenzyme A synthetase-1 and converts acetic acid to acetyl CoA in order to synthesize ATP to need for growth or PHA which is biodegradable polymer. In case of toluene degradation, the experiment was conducted before and after production of toluene dioxygenase as this enzyme, produced by P. putida, is an inducible enzyme. Toluene was detected using gas chromatography (GC). Similar amount of toluene was found in control group and before production of toluene dioxygenase (experimental group 1). However, reduction in toluene was detected after the production of toluene dioxygenase (experimental group 2). Acetic acid was detected through application of gas chromatography-mass spectrometer (GC-MS). The results showed the acetic acid peak was not detected in the experimental group to apply cell-free enzyme system. These results show that the cell-free enzyme system obtained from P. putida and C. necator retained the ability to degrade toluene and acetic acid. However, P. putida needs to produce the inducible enzyme before preparation of the cell-free enzyme system.

본 연구에서는 톨루엔 분해 균주인 Pseudomonas putida와 아세트산 분해 균주인 Cupriavidus necator에 무세포 효소 시스템(cell-free enzyme system)을 적용하여 톨루엔과 아세트산에 대한 분해 가능성을 확인하는 실험을 수행하였다. P. putida는 톨루엔 존재 하에서만 toluene dioxygenase를 생성하여 톨루엔을 cis-toluene dihydrodiol로 분해하며, C. necator는 acetyl coenzyme A synthetase-1을 생성하여 아세트산을 acetyl CoA로 전환시켜 생존에 필요한 ATP나 생분해성(biodegradable) 고분자인 Polyhydroxyalkanoate (PHA)를 합성한다. P. putida의 톨루엔 분해 효소인 toluene dioxygenase는 유도효소이기 때문에 toluene dioxygenase 생성 전과 후로 나누어 실험을 진행하였다. P. putida의 톨루엔 분해능력 확인을 위한 gas chromatography (GC) 분석 결과, 대조군과 toluene dioxygenase 생성 전인 실험군 1에서는 검출된 톨루엔의 양이 거의 유사하였으나, toluene dioxygenase 생성 후인 실험군 2에서는 검출된 톨루엔의 양이 대조군 및 실험군 1에 비해 감소하였다. 또한 C. necator의 아세트산 분해능력 확인을 위한 gas chromatography-mass spectrometer (GC-MS) 분석 결과, 무세포 효소 시스템을 적용한 실험군에서는 아세트산에 대한 피크가 검출되지 않았다. 따라서 P. putida와 C. necator는 무세포 효소 시스템 적용 후에도 톨루엔 및 아세트산 분해 능력이 유지되었으나, P. putida는 무세포 효소 시스템을 적용하기 전에 유도 효소를 생성하는 과정이 필요하다.

Keywords

References

  1. Ahn, J. W., Kim, Y. H., Kim, K. H. and Song, H. N., "A Review of Analytical Method for Volatile Fatty Acids as Designated Offensive Odorants in Korea," Analytical Science and Technology, 25(2), 91-101(2012). https://doi.org/10.5806/AST.2012.25.2.091
  2. Hupert-Kocurek, K., Guzik, U. and Wojcieszynska, D., "Characterization of Catechol 2,3-dioxygenase from Planococcussp. strain S5 Induced by High Phenol Concentration," Acta. Biochim. Pol., 59(3), 345-351(2012).
  3. Fan, L. H., Zhang, Z. J., Yu, X. Y., Xue, Y. X., Wang, M. M. and Tan, T. W., "In vitro Assembly of Minicellulosomes with Two Scaffoldins on the Yeast Cell Surface for Cellulose Saccharification and Bioethanol Production," Process Biochem., 48(3), 430-437(2013). https://doi.org/10.1016/j.procbio.2013.01.012
  4. Khattak, W. A., Ullah, M. W., Ul-Islam, M., Khan, S., Kim, M. A., Kim, Y. and Park, J. K., "Development Strategies and Regulation of Cell-free Enzyme System for Ethanol Production: a Molecular Prospective," Appl Microbiol. Biotechnol., 98(23), 9561-9578 (2014). https://doi.org/10.1007/s00253-014-6154-0
  5. Welch, P. and Scopes, R. K., "Studies on Cell-free Metabolism: Ethanol Production by a Yeast Glycolytic System Reconstituted From Purified Enzymes," J. Biotechnol., 2(5), 257-273(1985). https://doi.org/10.1016/0168-1656(85)90029-X
  6. Ullah, M. W., Khattak, W. A., Ul-Islam, M., Khan, S. and Park, J. K., "Encapsulated Yeast Cell-free System: A Strategy for Cost-effective and Sustainable Production of Bio-ethanol in Consecutive Batches," Biotechnol. Bioprocess Eng., 20(3), 561-575(2015). https://doi.org/10.1007/s12257-014-0855-1
  7. Ullah, M. W., Khattak, W. A., Ul-Islam, M., Khan, S. and Park, J. K., "Bio-ethanol Production Through Simultaneous Saccharification and Fermentation Using An Encapsulated Reconstituted Cellfree Enzyme System," Biochem. Eng. J., 91, 110-119(2014). https://doi.org/10.1016/j.bej.2014.08.006
  8. Yeh, W. K., Gibson, D. T. and Liu, T.-N., "Toluene Dioxygenase: A Multicomponent Enzyme System," Biochem. Biophys. Res. Commun., 78(1), 401-410(1977). https://doi.org/10.1016/0006-291X(77)91268-2
  9. Chakraboyty, P., Gibbons, W. and Muthukumarappan, K., "Conversion of Volatile Fatty Acids Into Polyhydroxyalkanoate by Ralstonia Eutropha," J. Appl. Microbiol., 106(6), 1996-2005(2009). https://doi.org/10.1111/j.1365-2672.2009.04158.x
  10. Khan, S., Khattak, W. A., Ullah, M. W., Yu, B. and Park, J. K., "Enhanced Bio-ethanol Production via Simultaneous Saccharification and Fermentation Through a Cell Free Enzyme System Prepared by Disintegration of Waste of Beer Fermentation Broth," Korean J. Chem. Eng., 32(4), 694-701(2015). https://doi.org/10.1007/s11814-014-0242-9
  11. Ullah, M. W., Ul-Islam, M., Khan, S., Kim, Y. and Park, J. K., "Innovative Production of Bio-cellulose Using a Cell-free System Derived from a Single Cell Line," Carbohydr Polym., 132, 286-294(2015). https://doi.org/10.1016/j.carbpol.2015.06.037
  12. Khattak, W. A., Ul-Islam, M., Ullah, M. W., Yu, B. and Park, J. K., "Yeast Cell-free Enzyme System for Bio-ethanol Production at Elevated Temperatures," Process Biochem., 49(3), 357-364(2014). https://doi.org/10.1016/j.procbio.2013.12.019
  13. Finette, B. A., Subramanian, V. and Gibson, D. T., "Isolation and Characterization of Pseudomonas Putida PpF1 Mutants Defective in the Toluene Dioxygenase Enzyme System," J. Bacteriol., 160(3), 1003-1009(1984).
  14. Zylstra, G. J., McCombie, W. R., Gibson, D. T. and Finette, B. A., "Toluene Degradation by Pseudomonas putida F1: Genetic Organization of the tod Operon," Appl Environ Microbiol., 54(6), 1498-1503(1988).
  15. Subramanian, V., Liu, T. -N., Yeh, W. K. and Gibson, D. T., "Toluene Dioxygenase: Purification of An Iron Sulfur Protein by Affinity Chromatography," Biochem. Biophys. Res. Commun., 91(3), 1131-1139(1979). https://doi.org/10.1016/0006-291X(79)91998-3
  16. Lee, S. Y., "Bacterial Polyhydroxyalkanoates", Biotechnol Bioeng, 49(1), 1-14(1996). https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
  17. Wang, J., Yue, Z. B., Sheng, G. P. and Yu, H. Q., "Kinetic Analysis on the Production of Polyhydroxyalkanoates from Volatile Fatty Acids by Cupriavidus Necator with a Consideration of Substrate Inhibition, Cell Growth, Maintenance, and Product Formation," Biochem. Eng. J., 49(3), 422-428(2010). https://doi.org/10.1016/j.bej.2010.02.005
  18. Gibson, D. T., Koch, J. R. and Kallio, R. E., "Oxidative Degradation of Aromatic Hydrocarbons by Microorganisms: I. Enzymatic Formation of Catechol from Benzene," Biochemistry, 7(7), 2653-2662(1968). https://doi.org/10.1021/bi00847a031
  19. Rogers, J. E. and Gibson, D. T., "Purification and Properties of cis-Toluene Dihydrodiol Dehydrogenase from Pseudomonas putida," J. Bacteriol., 130(3), 1117-1124(1977).
  20. Ziffer, H., Jerina, D. M., Gibson, D. T. and Kobal, V. M., "Absolute Stereochemistry of the (+)-cis-1,2-dihydroxy-3-methylcyclohexa-3,5-diene Produced from Toluene by pseudomonas putida," J. Am. Chem. Soc., 95(12), 4048-4049(1973). https://doi.org/10.1021/ja00793a036
  21. Lee, J. S., "Biological Treatment of Wastewater in Automobile Paint Shop," MS. Thesis, Kyungpook National University, Daegu, Korea (2015).
  22. Kim, J. Y., Yoon, S. M., Park, K., Yoon, S. K., Kil, I. S., Park, H. J. and Rhee, Y., "Investigation on Desorption Characteristics of VOCs Adsorbed on Used Activated Carbons Collected from Painting Process," Korean Chem. Eng. Res., 48(6), 752-756(2010).
  23. Kim, S. S., Park, D. W., Kim, S. Y., Kim, J. H., Haam, S. J., Kim, E. and Kim, W. S., "VOC Treatment Characteristics Using Biofilter and Its Performance Enhancement with the Addition of Microorganisms", Korean Chem. Eng. Res. (HWAHAK KONGHAK), 39(3), 340-345(2001).