DOI QR코드

DOI QR Code

고분자전해질 연료전지에서 고분자 막의 이온 전도도

Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell

  • 황병찬 (순천대학교 화학공학과) ;
  • 정회범 (순천대학교 화학공학과) ;
  • 이무석 (코오롱인더스트리(주) Eco연구소 중앙기술원) ;
  • 이동훈 (코오롱인더스트리(주) Eco연구소 중앙기술원) ;
  • 박권필 (순천대학교 화학공학과)
  • 투고 : 2016.05.16
  • 심사 : 2016.06.28
  • 발행 : 2016.10.01

초록

고분자전해질 연료전지에서 전해질막의 이온전도도에 미치는 상대습도, 전류밀도, 온도의 영향에 대해 연구하였다. 전해질막의 물의 함량과 물의 이동은 이온전도도에 많은 영향을 미친다. 전기삼투와 역확산만으로 물 이동을 모사하고 해석하였다. 이온전도도는 셀 밖에서 측정 장비로 막 상태에서 그리고 막전극합체로 구동상에서 측정되었다. 상대습도 증가에 따라 막 내 물 함량이 증가하였고 물 함량 증가에 따라 이온전도도도 상승하였다. 전류밀도 증가에 따라 전기삼투와 역확산에 의한 물의 양이 증가해 물 함량이 선형적으로 증가하였고 그 결과 전류밀도 증가에 따라 이온전도도가 선형적으로 상승하였다. 온도가 $50^{\circ}C$에서 $80^{\circ}C$C로 증가함에 따라 이온전도도는 약 40% 증가하였다.

The effects of relative humidity, current density and temperature on the ionic conductivity were studied in PEMFC (Proton Exchange Membrane Fuel Cell). Water contents and water flux in the electrolyte membrane largely affected ion conductivity. The water flux was modelled and simulated by only electro-osmotic drag and back-diffusion of water. Ion conductivities were measured at membrane state out of cell and measured at MEA (Membrane and Electrode Assembly) state in condition of operation. The water contents in membrane increase as relative humidity increased in PEMFC, as a results of which ion conductivity increased. Current enhanced electro-osmotic drag and back diffusion and then water contents linearly increased. Enhancement of current density results in ion conductivity. Ion conductivity of about 40% increased as the temperature increased from $50^{\circ}C$ to $80^{\circ}C$.

키워드

참고문헌

  1. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England (2003).
  2. Karpenko-Jereb, L., Innerwinkler, P., Kelterer, A.M., Sternig, C., Fink, C., Prenninger, P. and Tatschl, R., "A Novel Membrane Transport Model for Polymer Electrolyte Fuel Cell Simulations," Inter. J. of Hydrogen Energy, 39, 7077-7088(2014). https://doi.org/10.1016/j.ijhydene.2014.02.083
  3. Hsu, W. Y. and Gierke, T. D., "Ion Transport and Clustering in Nafion Perfluorinated Membranes," J. Membr. Sci., 13, 307-326 (1983). https://doi.org/10.1016/S0376-7388(00)81563-X
  4. Fimrite, J., Struchtrup, H. and Djilali, N., "Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework," J. Electrochem Soc., 152, A, 1804-1814(2005). https://doi.org/10.1149/1.1952627
  5. Cwirko, E. H. and Carbonell, R. G., "JA Theoretical Analysis of Donnan Dialysis Across Charged Porous Membranes," J. Membr. Sci., 48, 155-179(1990). https://doi.org/10.1016/0376-7388(90)85003-4
  6. Zabolotsky, V. I. and Nikonenko, V. V., "Effect of Structural Membrane Inhomogeneity on Transport Properties," J. Membr. Sci., 79 181-198(1993). https://doi.org/10.1016/0376-7388(93)85115-D
  7. Berezina, N. P. and Karpenko, L.V., "Percolation Effects in Ion Exchange Materials," Colloid J., 62, 676-684(2000). https://doi.org/10.1023/A:1026670423208
  8. Carnes, B. and Djilali, N., "Analysis of Coupled Proton and Water Transport in a PEM Fuel Cell Using the Binary Friction Membrane Model," Electrochim Acta, 52, 1038-1052(2006). https://doi.org/10.1016/j.electacta.2006.07.006
  9. Berg, P., Promislow, K., Pierre, J., Stumper, J. and Wetton, B., "Water Management in PEM Fuel Cells," J. Electrochem. Soc., 151, A 341-353(2004). https://doi.org/10.1149/1.1641033
  10. Kulikovsky, A. A., "The Effect of Cathodic Water on Performance of a Polymer Electrolyte Fuel Cell," Electrochim Acta, 49, 5187-5196(2004). https://doi.org/10.1016/j.electacta.2004.06.034
  11. Kshitsh, A. Patankar, David, A. Dillard, Scott, W. Case, Michael, W. Ellis, Yeh-Hung, Lai, Michael K. Budinski, Graig S. Gittleman, "Hydrothermal Cahracterization of the Viscoelastic Properties of Gore-Select$^{(R)}$57 Protoen Exchange Membrane," Mech Time-Depend Mater, 12, 211-236(2008).
  12. Ye, X. and Wang, C. Y., "Measurement of Water Transport Properties Through Membrane-electrode Assemblies, I. Membrane," J. of Electrochem. Soc., 154(7), B676-B682(2007). https://doi.org/10.1149/1.2737379
  13. Ju, H. and Wang, C. Y., "Simon Cleghorn, Uwe Beusher, "Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation," J. of Electrochem. Soc., 152(8), A1645-A1653(2005). https://doi.org/10.1149/1.1943591
  14. Springer, T. E., Zawodzinski, T. A. and Gattesfeld, S., "Polymer Electrolyte Fuel Cell Model," J. of Electrochem. Soc., 138(8), 2334-2342(1991). https://doi.org/10.1149/1.2085971
  15. Zawodzinski, T. A., Springer, T. E., Davey, J., Jestel, R., Lopez, C., Valerio, J. and Gottesfeld, S., "A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes," J. Electrochem. Soc. 140, 1981-1985(1993). https://doi.org/10.1149/1.2220749
  16. Cooper, K. R., "Progress Toward Accurate Through-plane Ion Transport Resistance Measurement of Thin Solid Electrolytes," J. Electrochem. Soc., 157, B1731-1739(2010). https://doi.org/10.1149/1.3481561
  17. Jeong, J. J., Shin, Y. C., Lee, M. S., Lee, D. H., Na , I. C.i, Lee, H. and Park, K. P., "Characteristics of Poly(arylene ether sulfone) Membrane for Proton Exchange Membrane Fuel Cells," Korean Chem. Eng. Res., 51(5), 556-560(2013). https://doi.org/10.9713/kcer.2013.51.5.556
  18. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6

피인용 문헌

  1. 고분자전해질 연료전지에서 고분자막을 통한 물의 이동 vol.57, pp.3, 2019, https://doi.org/10.9713/kcer.2019.57.3.338
  2. 정치용 PEMFC MEA의 OCV 유지 방법에 의한 내구 평가 vol.57, pp.3, 2016, https://doi.org/10.9713/kcer.2019.57.3.344