DOI QR코드

DOI QR Code

고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성

Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions

  • Lee, Hye-Ri (Department of Chemical Engineering, Sunchon National University) ;
  • Na, Il-Chai (CNL Energy Co) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • 투고 : 2016.05.12
  • 심사 : 2016.06.16
  • 발행 : 2016.10.01

초록

휴대용 고분자전해질 연료전지의 수소발생용으로써 $NaBH_4$는 많은 장점을 갖고 있다. 본 연구에서는 고농도 $NaBH_4$ 용액에서 비담지 Co-P-B, Co-B 촉매의 $NaBH_4$ 가수분해 특성에 대해 연구하였다. 고농도에서 수소 발생 수율을 높이기 위해 $NaBH_4$ 가수분해 반응의 수소 발생 수율에 미치는 촉매 형태, $NaBH_4$ 농도, 응축수 회수 등의 영향에 대해 실험하였다. Co-P-B 제조과정에서 붕소의 비가 높아질수록 수소 발생 수율이 증가하였다. Co-P:B = 1:5 촉매를 사용해 $NaBH_4$ 수용액 농도를 20 wt%에서 25 wt%로 증가시켰을 때 수소 발생 수율이 감소하였다. Co-P-B와 Co-B 촉매를 같이 사용한 반응기에서 촉매 팩의 두께를 감소시키고 응축수를 회수하여, $NaBH_4$ 25 wt% 수용액으로 최고 수소 발생수율 96.4%를 얻었다.

Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration $NaBH_4$ solution were studied. In order to enhance the hydrogen generation yield at high concentration of $NaBH_4$, the effect of catalyst type, $NaBH_4$ concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in $NaBH_4$ solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% $NaBH_4$ solution.

키워드

참고문헌

  1. Commercial Drones: Highways in the Sky, Unmanned Aerial Systems (UAS), Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021, :http//wintergreenresearch.com/reports/CommercialUAS.html.
  2. Bradley, T. H., Moffitt, B. A., Mavris, D. N., Parekh, D. E., "Development and Experimental Characterization of a Fuel Cell Powered Aircraft," J. Power Sources, 171, 793-801(2007). https://doi.org/10.1016/j.jpowsour.2007.06.215
  3. Liu, B. H. and Li, Z. P., "A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction," J. Power Sources, 187, 527-534(2009). https://doi.org/10.1016/j.jpowsour.2008.11.032
  4. Fernandes, R., Patel, N., Miotello, A. and Filippi, M., "Studies on Catalytic Behavior of Co-Ni-B in Hydrogen Production by Hydrolysis of $NaBH_4$," Journal of Molecular Catalysis A: chemical, 298, 1-6(2009). https://doi.org/10.1016/j.molcata.2008.09.014
  5. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R. and Korthari, D. C., "Stability, Durability, and Reusability Studies on Transition Metal-doped Co-B Alloy Catalysts for Hydrogen Production," Int. J. Hydrogen Energy, 36, 13379-13391(2011). https://doi.org/10.1016/j.ijhydene.2011.08.021
  6. Fernandes, R., Patel, N. and Miotello, A., "Hydrogen Generation by Hydrolysis of Alkaline $NaBH_4$ Solution with Cr-promoted Co-B Amorphous Catalyst," Applied Catalysis B: Environmental., 92, 68-74(2009). https://doi.org/10.1016/j.apcatb.2009.07.019
  7. Fernandes, R., Patel, N. and Miotello, A., "Efficient Catalytic Properties of Co-Ni-P-B Catalyst Powders for Hydrogen Generation by Hydrolysis of Alkaline Solution of $NaBH_4$," Int. J. Hydrogen Energy, 34, 2893-2900(2009). https://doi.org/10.1016/j.ijhydene.2009.02.007
  8. Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from $NaBH_4$," Korean J. Chem. Eng., 27(2), 474-479(2010). https://doi.org/10.1007/s11814-010-0072-3
  9. Demirci, U. B. and Garin, F., "Ru-based Bimetallic Alloys for Hydrogen Generation by Hydrolysis of Sodium Tetrahydroborate," J. Alloys and Compounds, 463, 107-111(2008). https://doi.org/10.1016/j.jallcom.2007.08.077
  10. Ye, W., Zhang, H., Xu, D., Ma, L. and Yi, B., "Hydrogen Generation Utilizing Alkaline Sodium Borohydride Solution and Supported Cobalt Catalyst," J. Power Sources, 164, 544-548(2007). https://doi.org/10.1016/j.jpowsour.2006.09.114
  11. Gilson, P., Monteleone, G. and Prosini, P. P., "Hydrogen Production from Solid Sodium Borohydride," Int. J. Hydrogen Energy, 34, 929-937(2009). https://doi.org/10.1016/j.ijhydene.2008.09.105
  12. Sim, W. J., Jo, J. Y., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Stability of $NaBH_4$ Solution during Storage Process," Korean Chem. Eng. Res, 48(3), 322-326(2010).
  13. Hwang, B. C., Cho, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Durability of Co-P-B/Cu Catalyst for $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 50(4), 627-631(2012). https://doi.org/10.9713/kcer.2012.50.4.627
  14. Hwang, B. C., Jo, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "$NaBH_4$ Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy," Korean Chem. Eng. Res., 51(1), 35-41(2013). https://doi.org/10.9713/kcer.2013.51.1.35
  15. Oh, S. J., Jung, H. S., Jeong, J. J., Na, I. C., Ahn, H. G. and Park, K. P., "Hydrolysis Reaction of $NaBH_4$ using Unsupported Co-B, Co-P-B Catalyst," Korean Chem. Eng. Res., 53(1), 11-15(2015). https://doi.org/10.9713/kcer.2015.53.1.11
  16. Hwang, B. C., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Hydrogen Yield of $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 49(5), 516-520(2011). https://doi.org/10.9713/kcer.2011.49.5.516

피인용 문헌

  1. 활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응 vol.56, pp.5, 2016, https://doi.org/10.9713/kcer.2018.56.5.641
  2. 바닷물을 이용한 NaBH4 가수분해에 의한 수소발생 vol.57, pp.6, 2016, https://doi.org/10.9713/kcer.2019.57.6.758