DOI QR코드

DOI QR Code

서해안 저소성 점토질 실트 지반의 부분배수 특성

Partial Drainage Characteristics of Clayey Silt with Low Plasticity from the West Coast

  • 김석조 (아주대학교 건설시스템공학과) ;
  • 이상덕 (아주대학교 건설시스템공학과) ;
  • 김주현 (동신대학교 토목공학과)
  • 투고 : 2016.05.20
  • 심사 : 2016.09.01
  • 발행 : 2016.09.30

초록

서해안의 인천 및 화성지역에 분포하는 모래 및 실트 함유량이 많은 저소성 지반에 대해 피에조콘관입시험(CPTU) 데이터 및 강제치환 공법을 이용하여 부분배수 특성을 분석하였다. Powell과 Quarterman(1988)에 의한 과압밀비 $OCR={\kappa}(q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ 경험식은 모래함유량이 많은 서해안 저소성 실트 지반에서는 상대적으로 투수성이 커서 표준관입속도(2cm/s)하에서 콘관입저항력($q_t$)이 크게 평가되어 과압밀비가 크게 산정되는 경향을 나타냈다. Schnaid et al. (2004)는 간극수압계수($B_q$)-강도증가율($s_u/{\sigma}^{\prime}_{vo}$)-정규화된 콘저항($Q_t=(q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo}$)을 함께 도시하여, 부분배수 유무를 판단하도록 제시하였는데, 인천 및 화성 지역의 CPTU 데이터의 50% 이상이 부분배수 상태를 나타내는 $B_q$ < 0.3에 분포하였다. 또한, 강제치환 시공과정 중 부분배수 현상으로 인해 원지반의 강도증가 현상이 발생되어 설계 예상 치환깊이보다 훨씬 작은 실측값이 얻어진다는 관점에서 실측 치환깊이와 동일한 값이 얻어지도록 원지반의 지지력에 대한 역해석을 수행하였다. 그 결과, 소성지수가 감소할수록 내부마찰각이 커지는 경향을 나타내며, 내부마찰각(${\varphi}^{\prime}$)이 $2{\sim}7^{\circ}$의 범위에서 분포하는 것으로 분석되었다.

Parial drainage characteristics of clayey silt with low plasticity from the west coast (Incheon and Hwaseong) was analyzed using CPTU based existing correlation equations and compulsory replacement method. Generally, the estimated $OCRs={\kappa}{\cdot}((q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ using Powell and Quartman(1988) were higher than those obtained by the oeodometer tests. These trends were noticeable for the layers containing a lot of silty and sand soils. The assessment of partial drainage conditions was performed through Schnaid et al. (2004)'s equation; it is based on plotting the normalized cone resistance, $Q_t$ versus the pore pressure parameter, $B_q$ in combination with the strength incremental ratio, $s_u/{\sigma}^{\prime}_{vo}$ to the CPTU data. It is evident that more than half of the data fall in the range where $B_q$ < 0.3, corresponding to the domain in which the partial drainage prevails when testing normally consolidated soils at a standard rate of penetration (2 cm/s). To estimate the replacement depth of clayey silt with low plasticity, back analysis was carried out to evaluate the internal friction angle based on where the design depths are equal to the checked depths using bearing capacity equation. The internal friction angels obtained from the back analysis tended to increase as the plasticity index decreases, which is ranged approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=7^{\circ}$.

키워드

참고문헌

  1. Asaoka, A., Ihara, S., and Matsuo, M. (1989), "Partial Drainage behavior of Clayey Ground Focusing on Permeability", 24 th annual meeting, Japanese Geotechnical Society, pp.1121-1122.
  2. ASTM D422 (1990), Standard test method for particle-size analysis of soils, ASTM International, West Conshohocken, PA.
  3. ASTM D2487 (2000), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA.
  4. ASTM D4318 (2000), Standard test methods for liquid limit, plastic limit and plasticity index of soils, ASTM International, West Conshohocken, PA.
  5. ASTM D5778 (2003), Standard test method for electronic friction cone piezocone penetration testing of soils, ASTM International, West Conshohocken, PA.
  6. Campanella, R. G. and Robertson, P. K. (1988), "Current Status of the Piezocone Tests", Proc. 1st Int. Symp. Penetration Test, Orlando, FL, USA, ISOPT-1, pp.93-116.
  7. Hight, D. W., Georgiannou, V. N., and Ford, C. J. (1994). "Characterization of Clayey Sands", Proc. International conference on behavior of offshore structures, BOSS, 94, Boston, pp.321-340.
  8. House, A. R., Oliveira, J. R. M. S., and Randolph, M. F. (2001). "Evaluating the Coefficient of Consolidation Using Penetration tests", Physical modeling in geotech., Vol.1, No.3, pp.17-25.
  9. IRTP (1999), "International Reference Test Procedure for the Cone Penetration Test (CPT) and the Cone Penetration Test, Geotechnical Engineering for Transportation Infrastructure: Theory and Practice, Planning and Design, Construction and Maintenance", Twelfth European conference on soil mechanics and geotechnical engineering, Proc., Amsterdam, Netherlands.
  10. Japanese Geotechnical Society (1992), "Intermediate Soil-sand or Clay", Geotech Note Series, 2 (in Japanese).
  11. Japanese Port Association (2007), "Technical Standards for Port and Harbour Facilities in Japan", (in Japanese).
  12. Kamei, K. (1992), "Mechanical Properties of Intermediate Soil", Geotech Note Series, 2, Japanese Geotechnical Society, pp.7-54. (in Japanese).
  13. Kim, J. H., Baek, W. J., Ishikura, R., and Matsuda, H. (2010), "Undrained Shear Strength Characteristics of Intermediate Soils and Their Application to Rapid Banking Method", Proc. the 9th national symposium on ground improvement, The Society of material science, Japan, pp.209-304 (in Japanese).
  14. Kim, K. K., Prezzi, M., and Salgado, R. (2006), "Interpretation of Cone Penetration Tests in Cohesive Soils", Final report, FHWA/ IN/JTRP-2006/22, Joint Transportation Research Program.
  15. Kim, S. J., Lee, S. D., and Kim, J. H. (2016), "Evaluation of Undrained Shear Strength for Clayey Silt with Low Plasticity from the West Coast", Journal of Korean Geotechnical Society (in Korean, accepted).
  16. Matsuo, M. (1984), "Geotechnical Engineering, Theory and Practice of Reliability-based Design", Gihodo Syuppan, pp.28-31 (in Japanese).
  17. McNeilan, T. W. and Bugno, W. T. (1984), "Cone Penetration Test Results in Offshore California Silts", Strength testing of marine sediments: Laboratory and In-situ test measurements, ASTM Committee D-18 on soil and rock, ASTM, pp.55-71.
  18. Powell, J. J. M. and Quarterman, R. S. T. (1988), "The Interpretation of Cone Penetration Tests in Clays with Particular Reference to Rate Effects", Proc. International symposium on penetration testing, ISPT-1, Orlando, pp.903-910.
  19. Randolph, M. F. and Hope, S. (2004), "Effect of Cone Velocity on Cone Resistance and Excess Pore Pressures", Proc. Int. Symp. Eng. Practices Perform Soft Deposits, Osaka, Japan, p. 147-152.
  20. Schnaid, F., Lehane, B. M., and Fahey, M. (2004), "Characterisation of Unusual Geomaterials", Proc. ISC-2 Geotech. Geophys. Site. Charact, Porto, Portugal, pp.49-73.
  21. Teh, C. I. and Houlsby, G. T. (1991), "An Analytical Study of the Cone Penetration Test in Clay", Geotechnique, Vol.41, No.1, pp.17-34. https://doi.org/10.1680/geot.1991.41.1.17