DOI QR코드

DOI QR Code

Drone-Based Micro-SAR Imaging System and Performance Analysis through Error Corrections

드론을 활용한 초소형 SAR 영상 구현 및 품질 보상 분석

  • Lee, Kee-Woong (Department of Information and Electronic Engineering, Korea Aerospace University) ;
  • Kim, Bum-Seung (Department of Information and Electronic Engineering, Korea Aerospace University) ;
  • Moon, Min-Jung (Department of Information and Electronic Engineering, Korea Aerospace University) ;
  • Song, Jung-Hwan (CAL Lab., HyperSensing, Inc.) ;
  • Lee, Woo-Kyung (Department of Information and Electronic Engineering, Korea Aerospace University) ;
  • Song, Yong-Kyu (Department of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 이기웅 (한국항공대학교 항공전자정보공학부) ;
  • 김범승 (한국항공대학교 항공전자정보공학부) ;
  • 문민정 (한국항공대학교 항공전자정보공학부) ;
  • 송정환 ((주)하이퍼센싱 기술연구소) ;
  • 이우경 (한국항공대학교 항공전자정보공학부) ;
  • 송용규 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2016.07.07
  • Accepted : 2016.08.31
  • Published : 2016.10.07

Abstract

The use of small drone platform has become a popular topic in these days but its application for SAR operation has been little known due to the burden of the payload implementation. Drone platforms are distinguished from the conventional UAV system by the increased vulnerability to the turbulences, control-errors and poor motion stability. Consequently, sophisticated motion compensation may be required to guarantee the successful acquisition of high quality SAR imagery. Extremely limited power and mass budgets may prevent the use of additional hardwares for motion compensation and the difficulty of SAR focusing is further aggravated. In this paper, we have carried out a feasibility study of mico-SAR drone operation. We present the image acquisition results from the preliminary flight tests and a quality assessment is followed on the experimental SAR images. The in-flight motion errors derived from the unique drone movements are investigated and attempts have been made to compensate for the geometrical and phase errors caused by motions against the nominal trajectory. Finally, the successful operation of drone SAR system is validated through the focussed SAR images taken over test sites.

최근 무인기 탑재를 위한 소형 SAR 시스템 관련연구가 활발하게 진행되고 있으나, 드론과 같은 소형 비행 플랫폼에 대한 적용 사례는 매우 드물다. 드론의 경우, 고정익 무인항공기에 비해 기상, 조종환경 등에 취약하므로 고품질의 SAR 영상을 획득하기 위해서는 매우 정밀한 요동 분석 및 오차 보상 알고리즘이 요구된다. 특히 소형 드론에서는 SAR 탑재체 무게 및 전력의 제약으로 자세 제어 및 센서 장착이 어려워 영상 품질 보장이 어려워진다. 본 연구에서는 드론에 SAR를 탑재하여 영상을 획득하는 가능성을 제시한다. 이를 위해 실제 레이다가 탑재된 드론을 사용하여 SAR 영상을 획득하고, 그 품질을 분석하였다. 드론 SAR 기하 구조 분석을 통해 드론의 요동에 의해 발생될 수 있는 위상오차를 분석하고, 불규칙한 드론 이동에 의한 왜곡을 보상함으로써 드론 SAR의 운용 가능성을 검증하였다.

Keywords

References

  1. M. Edric, G. weiss, "Second generation Ka-band UAV SAR system", Proceedings of the 38th European Microwave Conference(EuMC), pp. 1636-1639, 2008.
  2. D. Gromek, P. Krysik, K. Ndini, and P. Samcznski, "FMCW SAR based on USPR hadware platform", IEEE Radar Conference, pp. 552-555, 2014.
  3. Michael Edrich, Georg Weiss, "Second-generation Kaband UAV SAR system", Proceedings of the 38th European Microwave Conference, pp. 1636-1639, 2008.
  4. Chenchen J. Li, H. Ling, "Synthetic aperture radar imaging using a small consumer drone", IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 685-686, 2015.
  5. J. Gonzalez-Partida, P. Almorox-Gonzalez, M. Burgos-Garcia, and B. Dorta-Naranjo, "SAR system for UAV operation with motion error compensation beyond the resolution cell", Sensors, vol. 8 no. 5, pp. 3384-3405, 2008. https://doi.org/10.3390/s8053384
  6. A. Meta, P. Hoogeboom, and L. P. Ligthart, "Signal processing for FMCW SAR", IEEE Transaction on Geoscience and Remote Sensing, vol. 45, no. 11, pp. 3159 -3532, 2007.
  7. J. J. M. de Wit, A. Meta, and P. Hoogeboom, "Modified range-Doppler processing for FM-CW synthetic aperture radar", IEEE Geoscience and Remote Sensing Letter, vol. 3, no. 1, pp. 83-87, 2006. https://doi.org/10.1109/LGRS.2005.856700
  8. Lei Zhang, Zhijun Qiao, Meng-dato Xing, Lei Yang, and Zheng Bao, "A robust motion compensation approach for UAV SAR imagery", IEEE Transaction on Geoscience and Remote Sensing, vol. 50, no. 8, pp. 3202-3218, 2012. https://doi.org/10.1109/TGRS.2011.2180392
  9. M. Xing, X. Jiang, R. Wu, F. Zhou, and Z. Bao, "Motion compnesation for UAV SAR based on raw radar data", IEEE Transaction on Geoscience and Remote Sensing, vol. 47, no. 8, pp. 2870-626, 2009. https://doi.org/10.1109/TGRS.2009.2015657
  10. K. C de Macedo, R. Scheiber, and A. Moreira, "An autofocus approach for residual motion errors with application to airborne repeat-pass interferometry", IEEE Transaction on Geoscience and Remote Sensing, vol. 46, no. 10, pp. 3151-3162, 2008. https://doi.org/10.1109/TGRS.2008.924004
  11. E. Zaugg, D. Long, "Theroy and application of motion compensation for LFM-CW SAR", IEEE Transaction on Geoscience and Remote Sensing, vol. 46, no. 10, pp. 2990-2998, 2008. https://doi.org/10.1109/TGRS.2008.921958
  12. J. R. Moreira, "A new method of aircraft motion error extraction from radar raw data for real time motion compensation", IEEE Transaction on Geoscience and Remote Sensisng, vol. 28, no. 4, pp. 620-626, 1990. https://doi.org/10.1109/TGRS.1990.572967
  13. GC Ian, HW Frank, "Ditigal processing of syntthetic aperture radar data:algorithm and implementation", 2005.
  14. Hui ma, Ming Bai, Bin liang, and Jungang Miao, "Along-track motion compnesation for strip-map SAR based on resampling", Progress in Electromagnetics Research M, vol. 39, pp. 181-191, 2014. https://doi.org/10.2528/PIERM14091804