DOI QR코드

DOI QR Code

Mechanochemically Synthesized Cu2Zn(Sn,Ge)S4 Nanocrystals and Their Application to Solar Cells

기계화학적 방법으로 합성한 Cu2Zn(Sn,Ge)S4 나노결정과 이를 이용하여 제조한 태양전지

  • Park, Bo-In (Center for Materials Architecturing, Korea Institute of Science and Technology) ;
  • Lee, Seung Yong (Center for Materials Architecturing, Korea Institute of Science and Technology) ;
  • Lee, Doh-Kwon (Department of Nanomaterials Science and Engineering, Korea University of Science and Technology)
  • 박보인 (한국과학기술연구원, 물질구조제어연구센터) ;
  • 이승용 (한국과학기술연구원, 물질구조제어연구센터) ;
  • 이도권 (과학기술연합대학교, 나노재료공학과)
  • Received : 2016.09.02
  • Accepted : 2016.09.06
  • Published : 2016.09.30

Abstract

$Cu_{1.8}Zn_{1.2}(Sn_{1-x}Ge_x)S_4$ (CZTGeS) nanocrystals were mechanochemically synthesized from elemental precursor powders without using any organic solvents and any additives. The composition of CZTGeS nanocrystals were systematically varied with different Ge mole fraction (x) from 0.1 to 0.9. The XRD, Raman spectroscopy, high-resolution TEM, and diffuse reflectance studies show that the as-synthesized CZTGeS nanocrystals exhibited consistent changes in various structural and optical properties as a function of x, such as lattice parameters, wave numbers for $A_1$ Raman vibration mode, interplanar distances (d-spacing), and optical bandgap energies. The bandgap energy of the synthesized CZTGeS nanocrystals gradually increases from 1.40 to 1.61 eV with increasing x from 0.1 to 0.9, demonstrating that Ge-doping is useful means to tune the bandgap of mechanochemically synthesized nanocrystals-based kesterite thin-film solar cells. The preliminary solar cell performance is presented with an efficiency of 3.66%.

Keywords

References

  1. P. Jackson, R. Wuerz, D. Hariskos, E Lotter, W. Witte, M. Powalla, "Effect of heavy alkali elements in Cu(In,Ga)$Se_2$ solar cells with efficiencies up to 22.6%", Phys. Status Solidi PRL, Vol. 10, pp. 583-586, 2016.
  2. K. L. Chopra, P. D. Paulson, V. Dutta,"Thin-Film Solar Cells: An Overview", Prog. Photovolt: Res. Appl., Vol. 12, pp. 69-92, 2004. https://doi.org/10.1002/pip.541
  3. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka1, K. Matsubara, "CIGS absorbers and processes", Prog. Photovolt: Res. Appl., Vol. 18, pp. 453-466, 2010. https://doi.org/10.1002/pip.969
  4. S. E. Habas, H. A. S. Platt, M. F. A. M. van Hest, D. S. Ginley,"Low-Cost Inorganic Solar Cells: From Ink To Printed Device", Chem. Rev., Vol. 110, pp. 6571-6594, 2010. https://doi.org/10.1021/cr100191d
  5. S. Merdes, D. Abou-Ras, R. Mainz, R. Klenk, M. C. Lux-Steiner, A. Meeder, H. W. Schock, J. Klaer,"CdS/Cu(In,Ga)$S_2$ based solar cells with efficiencies reaching 12.9% prepared by a rapid thermal process", Prog. Photovolt: Res. Appl., Vol. 21, pp. 88-93, 2013. https://doi.org/10.1002/pip.2165
  6. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, N. Muthukumarasamy, "Effect of annealing on the structural properties of electron beam deposited CIGS thin films", Thin Solid Films, Vol. 516, pp. 6848-6852, 2008. https://doi.org/10.1016/j.tsf.2007.12.127
  7. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, "Preparation films by and evaluation of $Cu_2ZnSnS_4$ thin sulfurization of E-B evaporated precursors", Sol. Energy Mater. Sol. Cells, Vol. 49, pp.407-414, 1997. https://doi.org/10.1016/S0927-0248(97)00119-0
  8. W. Wang , M. T. Winkler , O. Gunawan , T. Gokmen , T. K. Todorov, Y. Zhu, D. B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency", Adv. Energy Mater., Vol. 4, pp. 1301465-1301469, 2014. https://doi.org/10.1002/aenm.201301465
  9. Y. Li, W. Ling, Q. Han and W. Shi, "Colloidal $Cu_2Zn(Sn_{1-x}Ge_x)S_4$ nanocrystals: electrical properties and comparison between their wurtzite and kesterite structures", RSC Adv., Vol. 4, pp. 55016-55022, 2014. https://doi.org/10.1039/C4RA10780B
  10. M. Morihama, F. Gao, T. Maeda, T. Wada,"Crystallographic and optical properties of $Cu_2Zn(Sn_{1-x}Ge_x)Se_4$ solid solution", Jpn. J. Appl. Phys., Vol. 53, pp. 04ER09-1-04ER09-6, 2014. https://doi.org/10.7567/JJAP.53.04ER09
  11. F. Li, Z. Xia, Q. Liu, "Insight into the Controlled Synthesis of $Cu_2Zn(Ge,Sn)S_4$ Nanoparticles with Selective Grain Size", J. Phys. Chem. C, Vol. 120, pp. 16969-16976, 2016. https://doi.org/10.1021/acs.jpcc.6b05894
  12. B. I. Park, Y. H. Hwang, S. Y. Lee, J. S. Lee, J. K. Park, J. H. Jeong, J. Y. Kim, B. S. Kim, S. H. Cho, D.-K. Lee, "Solvent-free synthesis of $Cu_2ZnSnS_4$ nanocrystals: a facile, green, up-scalable route for low cost photovoltaic cells", Nanoscale, Vol. 6, pp. 11703-11711, 2014. https://doi.org/10.1039/C4NR02564D
  13. S. Levcenko, M. Guc, C. Merschjann, G. Gurieva, S. Schorr, M. Lux-Steiner, E. Arushanov, "Photoluminescence characterization of $Cu_2ZnGeS_4$ single crystals", Phys. Status Solidi C, Vol. 10, No. 7-8, pp. 1079-1081, 2013. https://doi.org/10.1002/pssc.201200843
  14. J. Tauc, R. Grigorovici, A. Vancu, "Optical Properties and Electronic Structure of Amoorphous Germanium", Phys. Stat. Sol., Vol. 15, pp. 627-637, 1966. https://doi.org/10.1002/pssb.19660150224
  15. I. H. Kim, K. J. Kim, Y. J. Oh, K. H. Woo, G. Cao, S. H Jeong, J. H. Moon, "Bandgap-Graded $Cu_2Zn(Sn_{1-x}Ge_x)S_4$ Thin-Film Solar Cells Derived from Metal Chalcogenide Complex Ligand Capped Nanocrystals", Chem. Mater., Vol. 26, pp. 3957-3965, 2014. https://doi.org/10.1021/cm501568d