DOI QR코드

DOI QR Code

Comparison of parametric and nonparametric hazard change-point estimators

모수적과 비모수적 위험률 변화점 통계량 비교

  • Kim, Jaehee (Department of Information and Statistics, Duksung Women's University) ;
  • Lee, Sieun (Office of Biostatistics, School of Medicine, Ajou University)
  • 김재희 (덕성여자대학교 정보통계학과) ;
  • 이시은 (아주대학교 의과대학 의과학연구소)
  • Received : 2016.08.10
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

When there exists a change-point in hazard function, it should be estimated for exact parameter or hazard estimation. In this research, we compare the hazard change-point estimators. Matthews and Farewell (1982) parametric change-point estimator is based on the likelihood and Zhang et al. (2014) nonparametric estimator is based on the Nelson-Aalen cumulative hazard estimator. Simulation study is done for the data from exponential distribution with one hazard change-point. The simulated data generated without censoring and the data with right censoring are considered. As real data applications, the change-point estimates are computed for leukemia data and primary biliary cirrhosis data.

위험률에 변화점이 존재할 경우 위험률 변화점에 대한 추정 정확한 모수 추정을 위해 매우 필요하다. 본 연구에서는 한 개 위험률 변화점이 존재하는 경우 위험률의 변화점 추정량에 대한 비교 연구를 수행하였다. 우도함수에 기반한 모수적 방법인 Matthews와 Farewell (1982) 위험률 변화점 추정량과 Nelson-Aalen 누적 위험률에 기반한 비모수적 방법의 Zhang 등 (2014) 위험률 변화점 통계량을 고찰하여 특성을 파악하였다. 모의실험에서 지수분포를 따르는 생존데이터에 대해 위험률 변화점이 한 개 있는 경우 중도절단이 없는 경우와 중도절단이 있는 경위험률 추정량의 능력을 평균제곱오차를 계산하여 비교하였다. 실제 데이터에 대한 적용으로 백혈병 생존데이터와 원발성 담백증 경화 생존데이터에 대해 위험률 변화점을 추정하고 비교해 보았다.

Keywords

References

  1. Chang, I. S., Chen, C. H. and Hsiung, C. A. (1994). Estimation in change-point hazard rate models with random censorship. IMS Lecture Notes - Monograph Series, 23, 78-92.
  2. Dupuy, J. F. (2006). Estimation in a change-point hazard regression model. Statistics & Probability Letters, 76, 182-190. https://doi.org/10.1016/j.spl.2005.07.013
  3. Gijbels, I. and Gurler, U. (2003). Estimation of a change point in a hazard function based on censored data. Lifetime Data Analysis, 9, 395-411. https://doi.org/10.1023/B:LIDA.0000012424.71723.9d
  4. Goodman, M. S., Li, Y. and Tiwari, R. C. (2010). Detecting multiple change points in piecewise constant hazard functions. Journal of Applied Statistics, 38, 11, 2523-2532. https://doi.org/10.1080/02664763.2011.559209
  5. Henderson, R. (1990). A problem with the likelihood ratio test for a change-point hazard rate model. Biometrika, 77, 835-843. https://doi.org/10.1093/biomet/77.4.835
  6. Jeong, K. M. (1998). Nonparametric estimation of hazard rates change-point. The Korean Journal of Applied Statistics, 11, 163-175.
  7. Jeong, K. M. and Han, M. H. (1998). Estimation for change-point model of hazard rate. Communications for Statistical Applications and Methods, 5, 477-489.
  8. Kim, J. (2009). A change-point estimator with the hazard ratio. Journal of the Korean Statistical Society, 38, 377-382. https://doi.org/10.1016/j.jkss.2009.02.004
  9. Lee, S. and Shim, B. Y. and Kim, J. (2015) Estimation of hazard function and hazard change-point for the rectal cancer data. Journal of the Korean Data & Information Science Society, 26, 1225-1238. https://doi.org/10.7465/jkdi.2015.26.6.1225
  10. Loader, C. R. (1991). Inference for a hazard rate change point. Biometrika, 78, 749-757. https://doi.org/10.1093/biomet/78.4.749
  11. Luo, X., Turnbull, B. W. and Clark, L. C. (1997). Likelihood ratio tests for a changepoint with survival data. Biometrika, 84, 555-565. https://doi.org/10.1093/biomet/84.3.555
  12. Maller, R. A. and Zhou, X. (1996). Survival Analysis with Long-term Survivors, Wiley, New York.
  13. Matthews, D. E. and Farewell, V. T. (1982). On testing for constant hazard against a change-point alternative. Biometrics, 38, 463-468. https://doi.org/10.2307/2530460
  14. Matthews, D. E., Farewell, V. T. and Pyke, R. (1985). Asymptotic score-statistic processes and tests for constant hazard against a change-point alternative. The Annals of Statistics, 13, 583-591. https://doi.org/10.1214/aos/1176349540
  15. Nguyen, H. T., Rogers, G. S. and Walker, E. A. (1984). Estimation in change-point hazard rate models. Biometrika, 71, 299-304. https://doi.org/10.1093/biomet/71.2.299
  16. Pham, T. D. and Nguyen, H. T. (1990). Strong consistency of the maximum likelihood estimators in the change-point hazard bate model. Statistics: A Journal of Theoretical and Applied Statistics, 21, 203-216.
  17. Shin, S. B. and Kim, Y. J. (2014). Statistical analysis of recurrent gap time events with incomplete observation gaps. Journal of the Korean Data & Information Science Society, 25, 327-336. https://doi.org/10.7465/jkdi.2014.25.2.327
  18. Williams, M. R. and Kim, D. (2011). Likelihood ratio tests for continuous monotone hazards with an unknown change point. Statistics & Probability Letters, 81, 1599-1603. https://doi.org/10.1016/j.spl.2011.06.013
  19. Worsley, K. J. (1988). Exact percentage points of the likelihood-ratio test for a change-point hazard-rate model. Biometrics, 44, 259-263. https://doi.org/10.2307/2531914
  20. Yao, Y. C. (1986). Maximum likelihood estimation in hazard rate models with a change-point. Communications in Statistics - Theory and Methods, 15, 2455-2466. https://doi.org/10.1080/03610928608829261
  21. Zhang, W., Qian, L. and Li, Y. (2014). Semiparametric sequential testing for multiple change points in piecewise constant hazard functions with long-term survivors. Communications in Statistics - Simulation and Computation, 43, 1685-1699. https://doi.org/10.1080/03610918.2012.742106
  22. Zhao, X. B., Wu, X. Y. and Zhou, X. (2009). A change-point model for survival data with long-term survivors. Statistica Sinica, 19, 377-390.

Cited by

  1. A Bayesian time series model with multiple structural change-points for electricity data vol.28, pp.4, 2016, https://doi.org/10.7465/jkdi.2017.28.4.889