References
- Ahn, D. S., Han, J. H., Yoon, T. H., Kim, C. H. and Noh, M. S. (2015). Small area estimations for disease mapping by using spatial model. Journal of the Korean Data & Information Science Society, 26, 101-109. https://doi.org/10.7465/jkdi.2015.26.1.101
- Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data, CRC Press, New York.
- Chandra, H., Salvati, N. and Chambers, R. (2007). Small area estimation for spatially correlated populations-a comparison of direct and indirect model-based methods. Statistics in Transition, 8, 887-906.
- Coly, S., Charras-Garrido, M., Abrial, D. and Yao-Lafourcade, A. (2015). Spatiotemporal disease mapping applied to infectious diseases. Procedia Environmental Sciences, 26, 32-37. https://doi.org/10.1016/j.proenv.2015.05.019
- Geary, R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5, 115-145. https://doi.org/10.2307/2986645
- Ghosh, M. and Rao, J. (1994). Small area estimation: An appraisal. Statistical Science, 9, 55-76. https://doi.org/10.1214/ss/1177010647
- Han, J., Zhu L, Kulldorff, M., Hostovich, S., Stinchcomb, D., Tatalovich, Z., Lewis D. and Feuer, E. (2016). Using Gini coefficient to determining optimal cluster reporting sizes for spatial scan statistics. International Journal of Health Geographics, 15-27.
- Huang, L., Kulldorff, M. and Gregorio, D. (2007). A spatial scan statistic for survival data. Biometrics, 63, 109-118. https://doi.org/10.1111/j.1541-0420.2006.00661.x
- Huang, L., Tiwari, R. C., Zhaohui, Z., Kulldorff, M. and Feuer, E. J. (2009). Weighted normal spatial scan statistic for heterogeneous population data. Journal of the American Statistical Association, 104, 886-898. https://doi.org/10.1198/jasa.2009.ap07613
- Kulldorff, M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1487-1496.
- Kulldorff, M. (2016). SaTScan user guide v9.4.4, http://www.satscan.org/.
- Kulldorff, M., Huang, L., Pickle, L. and Duczmal, L. (2006). An elliptic spatial scan statistic. Statistics in Medicine, 25, 3929-3943. https://doi.org/10.1002/sim.2490
- Lawson, A. B. (2013). Bayesian disease mapping: Hierarchical modeling in spatial epidemiology, 2nd Ed., Chapman and Hall/CRC, New York.
- Lee, W. and Park, C. (2015). Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models. Journal of the Korean Data & Information Science Society, 26, 561-568. https://doi.org/10.7465/jkdi.2015.26.3.561
- Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17-23. https://doi.org/10.1093/biomet/37.1-2.17
- NCI. (2016). Surveillance, Epidemiology, and End Results (SEER) Program, www.seer.cancer.org.
- Patil, G. and Taillie, C. (2004). Upper level set scan statistic for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics, 11, 183-197. https://doi.org/10.1023/B:EEST.0000027208.48919.7e
- Pfeffermann, D. (2002). Small area estimation: New developments and directions. International Statistical Review/Revue Internationale De Statistique, 70, 125-143.
- Tango, T. and Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics, 4-11.
- Waller, L. A. and Jacquez, G. M. (1995) Disease models implicit in statistical tests of disease clustering. Epidemiology, 6, 584-590. https://doi.org/10.1097/00001648-199511000-00004
- Wheeler, D. C. (2007). A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996-2003, International Journal of Health Geographics. 6-13.
Cited by
- 공간이웃정보를 고려한 공간회귀분석 vol.28, pp.3, 2016, https://doi.org/10.7465/jkdi.2017.28.3.505
- 공간정보기반 클러스터링을 이용한 초고속인터넷 결합유형별 해지의 지역별 특성연구 vol.23, pp.3, 2017, https://doi.org/10.13088/jiis.2017.23.3.045
- 벌칙가능도함수를 이용한 1인가구와 저소득 독거노인의 공간군집 탐색 vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1257
- Cluster of Parasite Infections by the Spatial Scan Analysis in Korea vol.58, pp.6, 2020, https://doi.org/10.3347/kjp.2020.58.6.603
- Evaluating the spatial and temporal patterns of the severe fever thrombocytopenia syndrome in Republic of Korea vol.16, pp.2, 2021, https://doi.org/10.4081/gh.2021.994